Atomic Spectra
IB PHYSICS | ATOMIC PHYSICS

What is Light?

Light is Quantized

Photons of light can only have certain
values of energy

Energy of a Photon

$$
E=h f
$$

Energy of a Photon

$$
E=h f \quad c=f \lambda
$$

$$
c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
$$

Quick Recap of eV

$e V \rightarrow$

IB Physics Data Booklet

Sub-topic 7.1 - Discrete energy and radioactivity	Sub-topic 7.2 - Nuclear reactions
$E=h f$	$\Delta E=\Delta m c^{2}$
$\lambda=\frac{h c}{E}$	

Stefan-Boltzmann constant

Coulomb constant
Permittivity of free space
Permeability of free space
Speed of light in vacuum
Planck's constant

Elementary charge

$$
\begin{aligned}
& 5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \\
& 8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2} \\
& 8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& 4 \pi \times 10^{-7} \mathrm{Tm} \mathrm{~A}^{-1} \\
& 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& 1.60 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

Try This...

Calculate the energy carried by one photon of microwaves of wavelength 9 cm (as might be used in wifi signals) in J and $e V$

Shortcut time ©

Unit conversions

Since h and c are both constants, $h c$ acts as a constant as well

```
1 radian (rad) }\equiv\frac{18\mp@subsup{0}{}{\circ}}{\pi
Temperature (K) = temperature ( }\mp@subsup{}{}{\circ}\textrm{C})+27
1 light year (ly) = 9.46 < 1015 m
1 parsec (pc)=3.26 ly
1 astronomical unit (AU) = 1.50 }\times10\mp@subsup{0}{}{11}\textrm{m
1 kilowatt-hour (kWh)=3.60 }\times1\mp@subsup{0}{}{6}\textrm{J
hc=1.99\times10.25 J m = 1.24\times1\mp@subsup{0}{}{-6}\textrm{eV m}
```

$$
E=\frac{h c}{\lambda}
$$

Energy Levels

Electrons in an atom exist at discrete energy levels

Energy Levels

A photon is emitted whenever an electron transitions from one energy level down to a lower energy level
$\mathrm{E}_{4} \quad$ How many different transitions are possible between these four energy levels?

Energy Levels

$n=\infty$	0.00 eV
$\begin{aligned} & n=5 \\ & n=4 \end{aligned}$	$\begin{aligned} & -0.54 \mathrm{eV} \\ & -0.85 \mathrm{eV} \end{aligned}$
$n=3$	$-1.51 \mathrm{eV}$
$n=2$	$-3.40 \mathrm{eV}$

Energy Transitions

Different Energy transitions result in different energies (wavelengths) of light that are absorbed or emitted

Continuous Spectrum

When white light from the sun passes through a prism, the light is dispersed into its component colors in a continuous spectrum

Emission Spectrum

If an electric current is passed through an element in the form of a low-pressure gas, it will produce its own unique emission spectrum

Emission Spectrum

These spectra can be used to identify elements like a fingerprint

Absorption Spectrum

If white light is passed through a sample of gaseous atoms or molecules, it is found that the light of certain wavelengths is missing

Absorption Spectrum

HYDROGEN SPECTRUM

Emission Spectrum

The emission and absorption spectra are negative images of each other

THE
 ELECTROMAGNETIC SPECTRUM

THESE WAVES TRAVEL THROUGH THE ELECTROMAGNETIC FIELD. THEY WERE FORMERLY CARRED BYTHE AETHER, WHICH WAS DECOMMISSIONED IN 1897 DUE TO BUDGET CUTS.

Calculating Wavelength Emitted

$\lambda=\frac{h c}{E}$
hc
$1.99 \times 10^{-25} \mathrm{~J} \mathrm{~m}$
$1.24 \times 10^{-6} \mathrm{eV} \mathrm{m}$

Try This...

$$
n=1 \longrightarrow-13.6 \mathrm{eV}
$$

Working Backwards...

What is the energy in eV for a 434 nm blue emission line?

Hydrogen emission spectrum in the visible region

$$
\lambda=\frac{h c}{E}
$$

hc $\quad 1.99 \times 10^{-25} \mathrm{~J} \mathrm{~m} \quad 1.24 \times 10^{-6} \mathrm{eV} \mathrm{m}$

Working Backwards...

$n=\infty$	
$n=5$	
$n=4$	0.00 eV
-0.54 eV	
$n=3$	-0.85 eV
-1.51 eV	

$n=2 \longrightarrow-3.40 \mathrm{eV}$

Draw in the Energy Transition for a 434 nm blue emission line?

What transition has an energy difference of 2.86 eV ?

Hydrogen emission spectrum in the visible region

