Atomic Spectra

IB PHYSICS | ATOMIC PHYSICS

What is Light?

Light is Quantized

Photons of light can only have certain

values of energy

Energy of a Photon

Planck's Constant

h

 $6.63 \times 10^{-34} \text{ J s}$

Energy of a Photon

E = hf $c = f\lambda$

$c = 3.00 \times 10^8 \, m \, s^{-1}$

Quick Recap of eV

 $eV \rightarrow$

IB Physics Data Booklet

Sub-topic 7.1 – Discrete energy and radioactivity	Sub-topic 7.2 – Nuclear reactions
E = hf	$\Delta E = \Delta m c^2$
$\lambda = \frac{hc}{E}$	

Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8}Wm^{-2}K^{-4}$		
Coulomb constant	k	$8.99 \times 10^9 \text{N}\text{m}^2\text{C}^{-2}$		
Permittivity of free space	ε_0	$8.85 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$		
Permeability of free space	μ_0	$4\pi imes 10^{-7} T m A^{-1}$		
Speed of light in vacuum	с	$3.00 \times 10^8 \mathrm{ms^{-1}}$		
Planck's constant	h	6.63×10^{-34} J s		
Elementary charge	е	$1.60 \times 10^{-19} \text{C}$		

Calculate the energy carried by one photon of microwaves of wavelength 9 cm (as might be used in wifi signals) in J and eV

Shortcut time ③

Unit conversions

1 radian (rad) $\equiv \frac{180^{\circ}}{\pi}$

Temperature (K) = temperature (°C) + 273

1 light year (ly) = 9.46×10^{15} m

1 parsec (pc) = 3.26 ly

1 astronomical unit (AU) = 1.50×10^{11} m

1 kilowatt-hour (kWh) = 3.60×10^6 J

 $hc = 1.99 \times 10^{-25} \text{ Jm} = 1.24 \times 10^{-6} \text{ eVm}$

Since *h* and *c* are both constants, *hc* acts as a constant as well

Energy Levels

Electrons in an atom exist at discrete energy levels

Energy Levels

A photon is emitted whenever an electron transitions from one energy level down to a lower energy level

How many different transitions are possible between these four energy levels?

Energy Levels

Energy Transitions

Different Energy transitions result in different energies (wavelengths) of light that are absorbed or emitted

Continuous Spectrum

When white light from the sun passes through a prism, the light is dispersed into its component colors in a continuous spectrum

Emission Spectrum

If an electric current is passed through an element in the form of a low-pressure gas, it will produce its own unique emission spectrum

Emission Spectrum

These spectra can be used to identify elements like a fingerprint

Hydrogen						
Sodium						
Helium						
Neon						
Mercury						d.
650	600	550 V	500 /avelength (nm	450	400	350

Absorption Spectrum

If white light is passed through a sample of gaseous atoms or molecules, it is found that the light of certain wavelengths is missing

Absorption Spectrum

The emission and absorption spectra are negative images of each other

From Randall Monroe | xkcd.com

Calculating Wavelength Emitted

Try This...

What is the wavelength emitted?

$$\lambda = \frac{hc}{E}$$
 hc 1.99 × 10⁻²⁵ J m 1.24 × 10⁻⁶ eV m

Working Backwards...

What is the energy in eV for a 434 nm blue emission line?

 $h = \frac{hc}{E}$

Working Backwards...

Draw in the Energy Transition for a 434 nm blue emission line?

What transition has an energy difference of 2.86 eV?

n = 2 -3.40 eV