Particles and the Standard Model

IB PHYSICS | ATOMIC PHYSICS

What is the "Fundamental Particle"?

Fundamental Particles

Charge		Baryon Number		
$\frac{2}{3}$	u	С	t	$\frac{1}{3}$
$-\frac{1}{3}$	d	S	b	$\frac{1}{3}$

All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of -1

Charge	Leptons					
-1	е	μ	τ			
0	v_e	v_{μ}	$v_{ au}$			

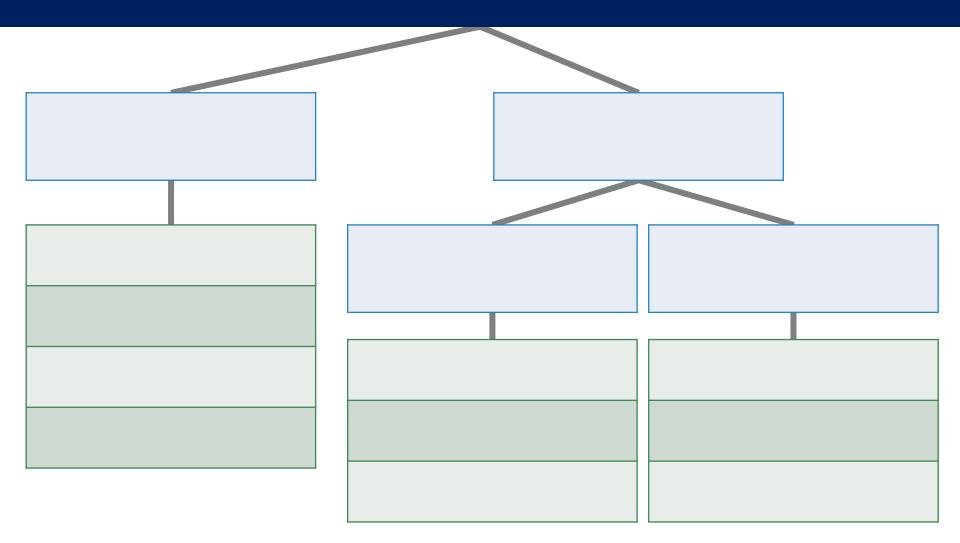
All leptons have a lepton number of 1 and antileptons have a lepton number of -1

Symbol	Name	Symbol	Name
u		е	Electron
d		μ	Muon
С		τ	Tau
S		v_e	Neutrino
t		v_{μ}	Neutrino
b		$v_{ au}$	Neutrino

Antiparticles have the opposite charge as their corresponding particle and have a bar over their symbol

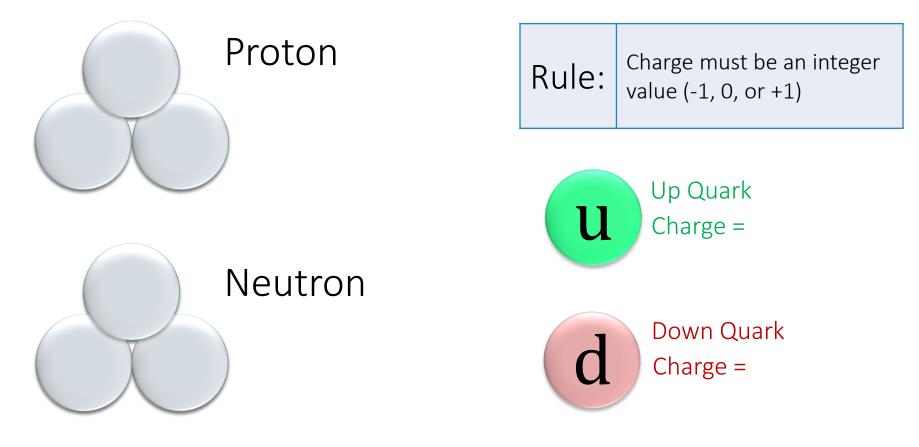
Symbol	Name	Charge
S	Strange	$-\frac{1}{3}$
\overline{S}	Antistrange	$+\frac{1}{3}$

IB Physics Data Booklet

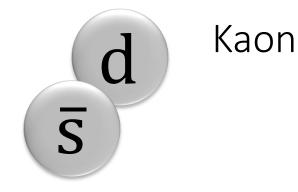

Sub-topic 7.1 – Discrete energy and radioactivity					rity S	Sub-topic 7.2 – Nuclear reactions				
E = hf					ΔΙ	$E = \Delta m c^2$				
$\lambda = \frac{hc}{E}$										
				Sub-topic 7	3 – The str	ucture of n	natter			
Charge	Q	uark	S	Baryon number		Charge	L	.eptor	IS	
2				1 1		-1	е	μ	τ	
$\frac{2}{3}e$	u	С	t	3		0	Ue	υμ	υτ	
$-\frac{1}{3}e$	d	S	b	$\frac{1}{3}$		All leptons have a lepton number				
All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of –1			of 1 and antileptons have a lepton number of –1							
				Gravitational	We	eak	Electro	magn	etic	Strong
Particles experiencing		All	Quarks, leptons		otons Charged			Quarks, gluons		
Particles mediating		Graviton	W+. V	<i>N</i> −, Z ⁰	γ		Gluons			

Fundamental Particles

Symbol	Name	Charge	Baryon #	Symbol	Name	Charge	Lepton #
u	Up	$+\frac{2}{3}$	$\frac{1}{3}$	e	Electron	-1	1
d	Down	$-\frac{1}{3}$	$\frac{1}{3}$	μ	Muon	-1	1
С	Charm	$+\frac{2}{3}$	$\frac{1}{3}$	τ	Tau	-1	1
S	Strange	$-\frac{1}{3}$	$\frac{1}{3}$	v_e	Electron Neutrino	0	1
t	Тор	$+\frac{2}{3}$	$\frac{1}{3}$	v_{μ}	Muon Neutrino	0	1
b	Bottom	$-\frac{1}{3}$	$\frac{1}{3}$	$v_{ au}$	Tau Neutrino	0	1


Symbol	Name	Charge	Baryon #	Symbol	Name	Charge	Lepton #
ū	Antiup	$-\frac{2}{3}$	$-\frac{1}{3}$	ē	Antielectron (positron)	+1	-1
ā	Antidown	$+\frac{1}{3}$	$-\frac{1}{3}$	μ	Antimuon	+1	-1
ī	Anticharm	$-\frac{2}{3}$	$-\frac{1}{3}$	τ	Antitau	+1	-1
Ī	Antistrange	$+\frac{1}{3}$	$-\frac{1}{3}$	$ar{v}_e$	Electron Antineutrino	0	-1
ī	Antitop	$-\frac{2}{3}$	$-\frac{1}{3}$	$ar{v}_{\mu}$	Muon Antineutrino	0	-1
b	Antibottom	$+\frac{1}{3}$	$-\frac{1}{3}$	$ar{v}_{ au}$	Tau Antineutrino	0	-1

Classifying Particles

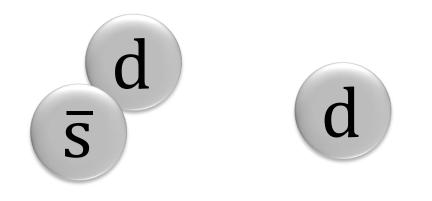

Baryons

All Baryons are formed from a combination of 3 quarks or antiquarks

Mesons

All Mesons are formed from a combination of a quark and antiquark

Rule: Charge must be an integer value (-1, 0, or +1)


d D-Meson

Charge		Baryon Number		
$\frac{2}{3}$	u	С	t	$\frac{1}{3}$
$-\frac{1}{3}$	d	S	b	$\frac{1}{3}$

All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of -1

Quark Confinement

Quarks have never been observed on their own

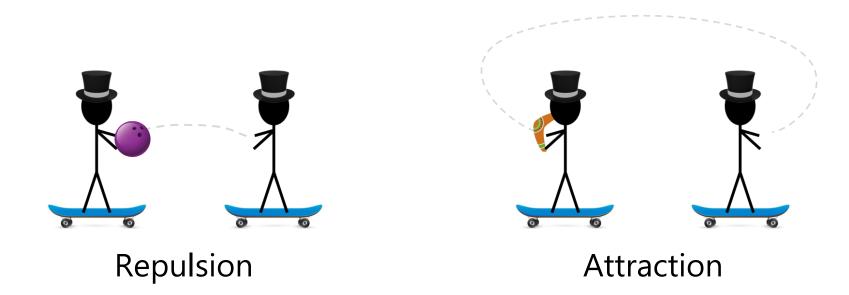
The amount of energy required to overcome the strong nuclear force holding the quarks together gets converted into mass and forms a new quark pair

Ī

Conservation

For an interaction to be possible, the following must stay conserved:

Baryon #	Lepton #	Charge	Strangeness	
	$n \rightarrow$	$p + e^{-}$	$+ \bar{v}_{o}$	
			E	
Baryon #				
Lepton #				
Charge				


Conservation

$$p + e^- \rightarrow n + v_e$$

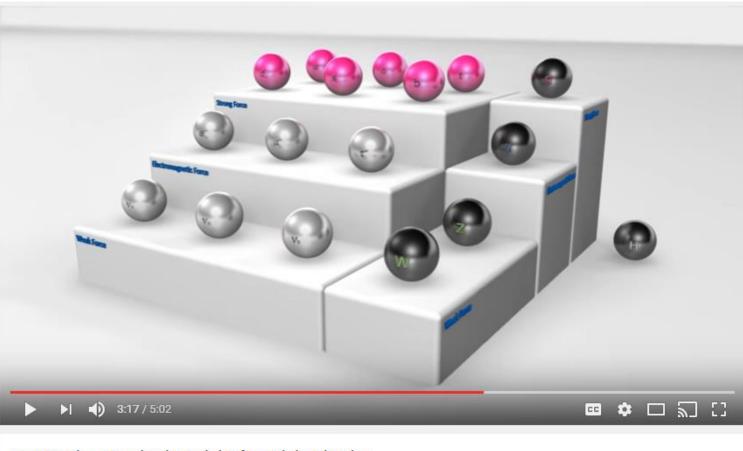
$n + p \rightarrow e^+ + \bar{v}_e$

Exchange Particles

At the fundamental level of particle physics, forces are explained in terms of the transfer of **exchange particles** (**gauge bosons**) between the two particles experiencing the force

These interactions are not observable, so we call them virtual particles

Types of Forces

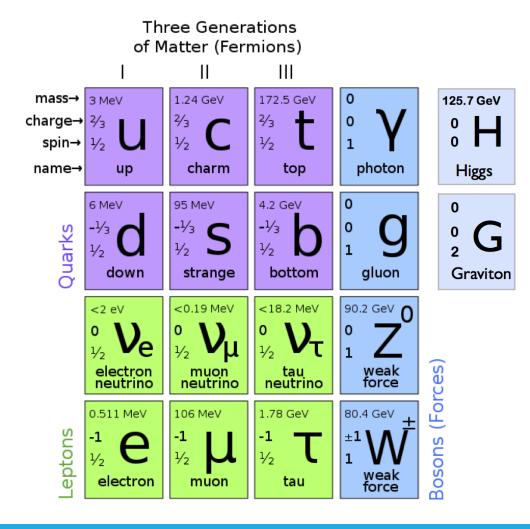

	Gravitational	Weak	Electromagnetic	Strong
Particles experiencing	All	Quarks, leptons	Charged	Quarks, gluons
Particles mediating	Graviton	W+, W⁻, Z⁰	γ	Gluons

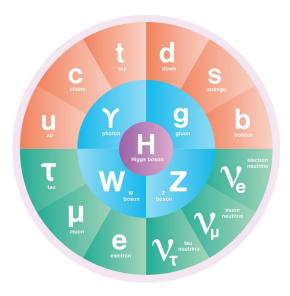
Sample IB Question

- 26. Which of the following lists three fundamental forces in increasing order of strength?
 - A. electromagnetic, gravity, strong nuclear
 - B. weak nuclear, gravity, strong nuclear
 - C. gravity, weak nuclear, electromagnetic
 - D. electromagnetic, strong nuclear, gravity

	Gravitational	Weak	Electromagnetic	Strong
Particles experiencing	All	Quarks, leptons	Charged	Quarks, gluons
Particles mediating	Graviton	W+, W-, Z ⁰	γ	Gluons

The Standard Model




CERN: The Standard Model Of Particle Physics

Sample IB Question

- 27. For which reason were quarks first introduced?
 - A. To explain the existence of isotopes
 - B. To describe nuclear emission and absorption spectra
 - C. To account for patterns in properties of elementary particles
 - D. To account for the missing energy and momentum in beta decay

The Standard Model

