ATOMIC PHYSICS

IB PHYSICS | COMPLETED NOTES

Radioactive Decay
IB PHYSICS | ATOMIC PHYSICS

Standard Notation

What do you notice about the notation written below? Can you determine what each color represents?

Mass Number

Atomic Number

Try This

${ }_{11}^{23} \mathrm{Na}$
 ${ }_{12}^{25} \mathrm{Mg}$

Mass Number	23
Atomic Number	11
\# of Protons	11
\# of Neutrons	12

Mass Number	25
Atomic Number	12
\# of Protons	12
\# of Neutrons	13

Sample IB Question

A nucleus of Californium (Cf) contains 98 protons and 154 neutrons. Which of the following correctly identifies this nucleus of Californium?

$$
{ }_{254}^{98} \mathrm{Cf}
$$

${ }_{98}^{252} \mathrm{Cf}$

${ }_{154}^{350} \mathrm{Cf}$

Isotopes \& Nuclides

Isotopes of Carbon

Same \# of protons
Different \# of neutrons

Nuclide
Single atom
configuration

Fundamental Forces

Remember Coulomb's Law?

$$
F=k \frac{q_{1} q_{2}}{r^{2}}
$$

${ }_{5}^{11} B$

Opposite charges attract Like charges repel

Fundamental Forces

Strong Nuclear Force

- Very short range
- Very strong

Electromagnetic Force Like Velcro

Gravitational Force
Weak Nuclear Force

Unstable Nuclei

More neutrons than protons

Neutrons serve as a buffer between repelling protons

Radioactivity

Radioactivity is a process where unstable elements decay into new elements and release energy as particles and/or waves

Alpha Decay

An unstable nucleus sheds alpha particle (helium nucleus) made from 2 protons and 2 neutrons

$$
\begin{aligned}
& { }_{Z}^{A} \mathrm{X} \rightarrow{ }_{Z-2}^{A-4} \mathrm{X}+{ }_{2}^{4} \mathrm{He} \\
& \text { Parent } \\
& \text { Nuclide } \\
& \text { Daughter } \\
& \text { Nuclide } \\
& \text { Alpha } \\
& \text { Particle }
\end{aligned}
$$

Complete the missing notation:

$$
{ }_{92}^{238} \mathrm{U} \rightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \mathrm{He}
$$

Alpha Decay - Predict

${ }_{88}^{222} \mathrm{Ra} \rightarrow{ }_{86}^{218} \mathrm{Rn}+\underline{{ }_{2}^{4} \mathrm{He}}$
${ }_{84}^{208} \mathrm{Po} \rightarrow{ }_{82}^{204} \mathrm{~Pb}+{ }_{2}^{4} \alpha$

Beta-Negative Decay

In an unstable nucleus, sometimes a neutral neutron is converted into a positive proton and negative electron. When this happens, another particle called an antineutrino $\left(\bar{v}_{e}\right)$ is also formed

${ }_{0}^{1} \mathrm{n} \rightarrow{ }_{1}^{1} \mathrm{p}+{ }_{-1}^{0} \mathrm{e}+\stackrel{\stackrel{\downarrow}{\stackrel{\rightharpoonup}{v}_{e}^{e}}}{ }$

Beta-Negative Decay

BETA-DECAY SET WITH MINI PARTICLES

$\$ 48.99$
Qty
1

ADD TO CART

\leftarrow Previous Product

SHARE:
ff Share
Tweet
(D) Pinit
G* +1

Beta-Negative Decay

$$
\begin{aligned}
& { }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow{ }_{Z+1}^{\mathrm{A}} \mathrm{X}+{ }_{-1}^{0} \mathrm{e}+\bar{v}_{e} \\
& \text { Parent } \\
& \text { Nuclide } \\
& \text { Daughter } \\
& \text { Nuclide } \\
& \text { Electron } \\
& \text { Antineutrino }
\end{aligned}
$$

**The proton stays and the electron and antineutrino flies away as "radiation"

Parent

After

Daughter

Beta-Positive Decay

In an opposite process, a positive proton can be converted into a neutral neutron and positively charged electron (known as a positron). When this happens, another particle called a neutrino $\left(v_{e}\right)$ is also formed

$$
\frac{1}{1} \mathrm{p} \rightarrow \frac{1}{0} \mathrm{n}+\mathrm{p}^{0} \mathrm{e}+v_{e}
$$

Beta-Positive Decay

$$
\begin{aligned}
& { }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow{ }_{Z-1}^{\mathrm{A}} \mathrm{X}+{ }_{+1}^{0} \mathrm{e}+v_{e} \\
& \text { Parent } \\
& \text { Daughter } \\
& \text { Positron } \\
& \text { Neutrino }
\end{aligned}
$$

Beta Decay - Predict

$$
{ }_{90}^{234} \mathrm{Th} \rightarrow{ }_{91}^{234} \mathrm{~Pa}+{ }_{-1}^{0} \mathrm{e}+\bar{v}_{e}
$$

${ }_{53}^{131} \mathrm{I} \rightarrow{ }_{54}^{131} \mathrm{Xe}+\underline{{ }_{1}^{0} \mathrm{e}}+\bar{v}_{e}$
${ }_{6}^{14} \mathrm{C} \rightarrow{ }_{7}^{14} \mathrm{~N}+{ }_{-1}^{0} \mathrm{e}+\bar{v}_{e}$
${ }_{12}^{23} \mathrm{Mg} \rightarrow{ }_{11}^{23} \mathrm{Na}+{ }_{+1}^{0} \mathrm{e}+v_{e}$

Gamma Decay

After an unstable nucleus has emitted an alpha or beta particle, it can contain excess energy that is released as gamma radiation

The Math Always Adds Up

$$
\begin{aligned}
& { }_{92}^{238} \mathrm{U} \rightarrow{ }_{9}^{234} \mathrm{Th}+{ }_{2}^{4} \mathrm{He} \\
& { }_{90}^{234} \mathrm{Th}
\end{aligned}{ }_{9}^{234} \mathrm{~Pa}+{ }_{91}^{0} \mathrm{e}+\bar{v}_{e} .
$$

Particle Review

	Particle	Name
-	${ }_{1}^{1} \mathrm{p}$	Proton
	${ }_{0}^{1} \mathrm{n}$	Neutron
.	$-{ }_{1}^{0} \mathrm{e}$	Electron
.	$+{ }_{1}^{0} \mathrm{e}$	Positron
	\bar{v}_{e}	Antineutrino
	v_{e}	Neutrino

Sample IB Question

24. Which of the following correctly identifies the three particles emitted in the decay of the nucleus
${ }_{20}^{45} \mathrm{Ca}$ into a nucleus of ${ }_{21}^{45} \mathrm{Sc}$?
A. $\alpha, \beta^{-}, \gamma$
B. $\beta^{-}, \gamma, \bar{v}$
C. α, γ, \bar{v}
D. $\alpha, \beta^{-}, \bar{v}$

Ionizing Radiation

IONIZING RADIATION CLUSTEROF

More mass allows particles to more efficiently transfer energy and ionize an atom

Radiation Penetration

Remember the Right Hand Rule?

Thumb points in direction of the current
Fingers point in direction of the field lines
Palm points in direction of the force

How do you represent a direction that's perpendicular to the paper?

Into the paper
Out of the paper

Radiation Deflection

magnetic field out of screen

Radiation Deflection

Summary of α, β, and γ

Property	Alpha (a)	Beta $\left(\beta^{+}\right.$or $\left.\beta^{-}\right)$.	Gamma (v) ~
Relative Charge	+2	+1 or -1	0
Relative Mass	4	0.0005	0
Typical Penetration	5 cm of air	30 cm of air	Highly penetrating
Nature	Helium nucleus	Positron or Electron	Electromagnetic wave
Typical Speed	$10^{7} \mathrm{~m} \mathrm{~s}^{-1}$	$2.5 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Notation	${ }_{2}^{4} \mathrm{He}$ or ${ }_{2}^{4} \alpha$	${ }_{-1}^{0} \mathrm{e}$ or ${ }_{-1}^{0} \beta$	$\gamma \circ \mathrm{r}_{0}{ }^{0} \gamma$
Ionizing Effect	Strong	Weak	Very Weak
Abosorbed by	Paper or skin	3 mm of Aluminum	Intensity halved by 2 cm of Lead

Valley of Stability

Graphing Decay

${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \mathrm{He}$
${ }_{90}^{234} \mathrm{Th} \rightarrow{ }_{91}^{234} \mathrm{~Pa}+{ }_{-1}^{0} \mathrm{e}+\bar{v}_{e}$

Alpha Decay

82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98
Pb	Bi	Po	At	Rn	Fr	Ra	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf
Lead	Bismuth	Polonium	Astatine	Radon	Francium	Radium	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	curium	Berkelium	Californium

$\underset{\text { Radium-226 }}{\alpha \text { D Day of }}{ }_{88}^{226} \mathrm{Ra} \rightarrow{ }_{86}^{222} \mathrm{Rn}+{ }_{2}^{4} \mathrm{He}$

Beta Decay

82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98
Pb	Bi	Po	At	Rn	Fr	Ra	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf
Lead	Bismuth	Polonium	Astatine	Radon	Francium	Radium	Actinium	Thorium	Protactiniun	Uranium	Neptunium	Plutonium	Americium	curium	Berkelium	Californium

β - Decay of
Protactinium-234
 Neutron Number, N

N

a Decay
Mass \#

- 4
${ }_{91}^{234} \mathrm{~Pa} \rightarrow{ }_{92}^{234} \mathrm{U}+{ }_{-1}^{0} \mathrm{e}+\bar{v}_{e}$

β - Decay
Mass \#
Same

Keeps right on going...

82	83	84	85	86	87	88	89	90	91	92
Pb	Bi	Po	At	Rn	Fr	Ra	Ac	Th	Pa	U
Lead	Bismuth	Polorium	Astatine	Radon	Francium	Radium	Actinium	Thorium	Protactirium	Uraium

Proton Number, Z

α Decay

Mass \#

- 4

Same
β - Decay
Mass \#
Same

Half-Life

The amount of time it takes for one half of the original sample to decay

Radioactive Nuclide	Half-life
Uranium-238	4.5×10^{9} years
Radium-226	1,600 years
Radon-222	3.8 days
Francium-221	4.8 minutes
Astatine-217	0.03 seconds

This can be in the scale of seconds, minutes, days or even years!

Half-Life Example

How many half-lives does it take for there to only be __\% of the original sample remaining?

$100 \% / 2=50 \% \quad$ remains after 1 half-life
$50 \% / 2=25 \% \quad$ remains after 2 half-lives
$25 \% / 2=12.5 \% \quad$ remains after 3 half-lives
12.5\% / $2=6.25 \%$ remains after 4 half-lives
$6.25 \% / 2=3.125 \%$ remains after 5 half-lives

The length of a half life depends...

Half Life Problem:

How many half-lives does it take for 100 g of a radioactive sample to decay to 12.5 g ?

$$
100 \mathrm{~g} \xrightarrow{1} 50 \mathrm{~g} \xrightarrow{2} 25 \mathrm{~g} \xrightarrow{3} 12.5 \mathrm{~g} \quad 3 \text { Half-Lives }
$$

If the half-life of the sample is 7 years, how long will this take?

$(3$ half-lives $) \times(7$ years $)=21$ years

The half-life of radium-226 is 1600 years. What percentage remains undecayed after 3200 years?
$(3200$ years $) \div(1600$ years $)=2$ Half-Lives $100 \% \underset{1}{\rightarrow} 50 \% \underset{2}{\rightarrow} 25 \%$

Radiocarbon Dating

How old is a sample of rock that has 6.25% of its original C-14. The half-life of C-14 is 5,730 years.

$1+1>2$

Energy and Mass Defects

IB PHYSICS | ATOMIC PHYSICS

Unified Atomic Mass Unit

When measuring and reporting the mass of individual atoms and subatomic particles, kilograms are inconveniently large...

The unified atomic mass unit is defined as one-twelfth of the mass of an isolated carbon-12 atom

1 mole of Carbon Atoms $=0.012 \mathrm{~kg}$

$$
\begin{aligned}
\frac{0.012 \mathrm{~kg}}{6.02 \times 10^{23}}= & 1.99 \times 10^{-26} \mathrm{~kg} \\
& \frac{1.99 \times 10^{-26} \mathrm{~kg}}{12}=1.661 \times 10^{-27} \mathrm{~kg}=1 \mathrm{u}
\end{aligned}
$$

Unified Atomic Mass Unit

Electron $\left(m_{e}\right)$	$9.110 \times 10^{-31} \mathrm{~kg}$	0.000549 u
Proton $\left(m_{p}\right)$	$1.673 \times 10^{-27} \mathrm{~kg}$	1.007276 u
Neutron $\left(m_{n}\right)$	$1.675 \times 10^{-27} \mathrm{~kg}$	1.008665 u

This is the only time that we will ever use 7 sig figs. In this case, rounding to 1.01 u just wouldn't cut it...

Unified atomic mass unit
$1.661 \times 10^{-27} \mathrm{~kg}$

IB Physics Data Booklet

Fundamental constants

Quantity	Symbol	Approximate value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$
Electron rest mass	m_{e}	$9.110 \times 10^{-31} \mathrm{~kg}=0.000549 \mathrm{u}=0.511 \mathrm{MeV} \mathrm{c}$
-2		
Proton rest mass	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}=1.007276 \mathrm{u}=938 \mathrm{MeV} \mathrm{c}^{-2}$
Neutron rest mass	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}=1.008665 \mathrm{u}=940 \mathrm{MeV} \mathrm{c}^{-2}$
Unified atomic mass unit	u	$1.661 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV} \mathrm{c}^{-2}$
Solar constant	S	$1.36 \times 10^{3} \mathrm{Wm}^{-2}$
Fermi radius	R_{0}	$1.20 \times 10^{-15} \mathrm{~m}$

Einstein's Famous Equation

According to Albert Einstein, "mass and energy are different manifestations of the same things"

$$
E=m c^{2}
$$

Einstein's Famous Equation

What is the energy equivalence of 1 g of matter?

$$
E=(0.001 \mathrm{~kg})\left(3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=9 \times 10^{13} \mathrm{~J}
$$

IB Physics Data Booklet

Sub-topic 7.3 - The structure of matter

Charge	Quarks			Baryon number
$\frac{2}{3} e$	u	c	t	$\frac{1}{3}$
$\frac{1}{3} e$	d	s	b	$\frac{1}{3}$

All quarks have a strangeness number of 0 except the strange quark that has a

Charge	Leptons		
-1	e	μ	τ
0	v_{e}	v_{μ}	v_{τ}

All leptons have a lepton number of 1 and antileptons have a lepton number of -1

	Gravitational	Weak	Electromagnetic	Strong
Particles experiencing	All	Quarks, leptons	Charged	Quarks, gluons
Particles mediating	Graviton	$\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{0}$	γ	Gluons

$$
E=m c^{2}
$$

YOU MATTER.

Until you multiply yourself times the speed of light squared. Then you Energy.

New Unit for Energy!

Electron-Volt eV

$$
1 \mathrm{MeV}=10^{6} \mathrm{eV}
$$

$$
\{\text { Energy in eV }\}=\frac{\{\text { Energy in } J\}}{1.60 \times 10^{-19}}
$$

What is the energy equivalence of 1 proton $\left(1.673 \times 10^{-27} \mathrm{~kg}\right)$?

$$
\begin{aligned}
& E=\left(1.673 \times 10^{-27}\right)\left(3 \times 10^{8}\right)^{2}=1.5057 \times 10^{-10} \mathrm{~J} \\
& \frac{1.5057 \times 10^{-10} \mathrm{~J}}{1.60 \times 10^{-19}}=941,062,500 \mathrm{eV} \approx 941 \mathrm{MeV}
\end{aligned}
$$

New Unit for Mass

$E=m c^{2}$

$$
\operatorname{MeV} c^{-2}
$$

Unified Atomic Mass Unit

Electron rest mass $\left(m_{e}\right)$	$9.110 \times 10^{-31} \mathrm{~kg}$	0.000549 u	$0.511 \mathrm{MeV} \mathrm{c}^{-2}$
Proton rest mass $\left(\mathrm{m}_{\mathrm{p}}\right)$	$1.673 \times 10^{-27} \mathrm{~kg}$	1.007276 u	$938 \mathrm{MeV} \mathrm{c}^{-2}$
Neutron rest mass $\left(\mathrm{m}_{\mathrm{n}}\right)$	$1.675 \times 10^{-27} \mathrm{~kg}$	1.008665 u	$940 \mathrm{MeV} \mathrm{c}^{-2}$
Unified atomic mass unit	$1.661 \times 10^{-27} \mathrm{~kg}$	1.000000 u	$931.5 \mathrm{MeV} \mathrm{c}^{-2}$

Mass of the Nucleus

A neutral Carbon-12 atom contains:

6 protons 6 neutrons 6 electrons

Electron rest mass $\left(\mathrm{m}_{\mathrm{e}}\right)$	0.000549 u
Proton rest mass $\left(\mathrm{m}_{\mathrm{p}}\right)$	1.007276 u
Neutron rest mass $\left(\mathrm{m}_{\mathrm{n}}\right)$	1.008665 u
Unified atomic mass unit	1.000000 u

If the mass of Carbon-12 is defined as exactly $12.00000 u$, then the nucleus mass is:

$12.00000 u-(6 \times 0.000549 u)=11.996706 u$

Component Mass

A nucleus of Carbon-12 contains:
6 protons 6 neutrons

Electron rest mass $\left(m_{e}\right)$	0.000549 u
Proton rest mass $\left(\mathrm{m}_{\mathrm{p}}\right)$	1.007276 u
Neutron rest mass $\left(\mathrm{m}_{\mathrm{n}}\right)$	1.008665 u

What is the total mass in terms of u ?

$\left.\begin{array}{l}6 \times 1.007276 u \\ 6 \times 1.008665 u\end{array}\right]-12.095646 u$

Mass Defect | $1+1$ > 2

Mass sum of the Carbon-12 subatomic particles:
$(6 \times 1.007276 u)+(6 \times 1.008665 u)=12.095646 u$
Mass of Carbon-12 nucleus: $11.996706 u$

Mass Defect $\longrightarrow 12.095646 u-11.99670 u=\mathbf{0 . 0 9 8 9 4 6 u}$

Where did the mass go?

Binding Energy

Binding Energy is the energy required to separate all of the nucleons

...or the energy released when a nucleus is formed from its nucleons

Mass Defect \rightarrow Binding Energy

Unified atomic mass unit	$1.661 \times 10^{-27} \mathrm{~kg}$	1.000000 u	$931.5 \mathrm{MeV} \mathrm{c}^{-2}$

$0.098946 \mathbf{u} \times \frac{931.5 \mathrm{MeVc}}{1 \mathrm{u}}=$
$92.1682 \mathrm{MeV} \mathrm{c}^{-2}$

$$
\begin{aligned}
E & =\mathrm{mc}^{2} \\
& =\left(92.1682 \mathrm{MeV}^{-2}\right)\left(\ell^{Z}\right) \\
& =\mathbf{9 2 . 1 7} \mathbf{~ M e V}
\end{aligned}
$$

Binding Energy per Nucleon

Binding Energy for Carbon-12 $=92.2 \mathrm{MeV}$

Number of Nucleons
for Carbon-12 $=12 \longleftarrow\left\{\begin{array}{l}6 \text { protons } \\ 6 \text { neutrons }\end{array}\right.$

Binding Energy per Nucleon $=\frac{92.16 \mathrm{MeV}}{12}$
7.68 MeV per Nucleon

Calculate Binding Energy per Nucleon

Nuclide	\# of p	\# of n	Nucleus Mass	
lodine-127	53	74	126.87544u	
$\begin{aligned} & 53 \times 1.007276 u \\ & 74 \times 1.008665 u \end{aligned}$		Mass Defect	m_{e}	0.000549 u
			m_{p}	$1.007276 u$
$128.026838 u-126.87544 u=1.15140 u$			m_{n}	$1.008665 u$
$9315 \mathrm{MeV} \mathrm{c}^{-2}$			1 u	$931.5 \mathrm{MeV} \mathrm{c}^{-2}$
$140 u \times \frac{1 u}{1 u}=1072.53 \mathrm{MeV} \mathrm{c}^{-2}$ Convert mass				
$E=m c^{2}=\left(1072.53 \mathrm{MeV} \mathrm{of}{ }^{2}\right) \ell^{2}=1072.53 \mathrm{MeV}$				
1072.53 MeV/127 = 8.45 MeV per Nucleon				

Calculate Binding Energy per Nucleon

*For your assigned nuclide, calculate the binding energy per Nucleon and record data in shared spreadsheet

Use a periodic table to determine atomic \# for your element

m_{e}	$0.000549 u$
m_{p}	$1.007276 u$
m_{n}	$1.008665 u$
$1 u$	$931.5 \mathrm{MeV} \mathrm{c}^{-2}$

	Element	Nucleus Mass (u)
1	Hydrogen-2	2.013553
2	Helium-3	3.014931
3	Hydrogen-3	3.015500
4	Helium-4	4.001505
5	Lithium-6	6.013476
6	Lithium-7	7.014356
7	Beryllium-9	9.009987
8	Carbon-12	11.996706
9	Nitrogen-14	13.999231
10	Oxygen-16	15.990523
11	Fluorine-19	18.993462
12	Magnesium-24	23.978454
13	Phosphorus-31	30.965527
14	Sulfur-34	33.959083
15	Potassium-39	38.953275

Element Nucleus Mass (u)

16	Iron-56	55.920662
17	Arsenic-75	74.903478
18	Krypton-84	83.891734
19	Zirconium-90	89.882739
20	Silver-107	106.879287
21	Tin-120	119.874752
22	Iodine-127	126.875373
23	Cesium-140	139.873608
24	Europium-153	152.886650
25	Tungsten-184	183.910307
26	Gold-197	196.923199
27	Lead-206	205.929447
28	Bismuth-209	208.934833
29	Uranium-235	234.993420
30	Uranium-238	238.000282

Binding Energy per Nucleon

Binding Energy per Nucleon (MeV)

3

Atomic Spectra
IB PHYSICS | ATOMIC PHYSICS

What is Light?

Energy< Wave $\begin{aligned} & \text { Warticle }\end{aligned}$ (photon)

Light is Quantized

Photons of light can only have certain discrete
values of energy

Energy of a Photon

$E=h f$
 Frequency
 [Hz]

Planck's Constant
$h \quad 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

Energy of a Photon

$$
\begin{array}{cc}
E=h f & c=f \lambda \\
E=h\left(\frac{c}{\lambda}\right) \longleftarrow & f=\frac{c}{\lambda} \\
\lambda=\frac{h c}{E} & c=3.00 \times 10^{8} \mathrm{~ms}^{-1}
\end{array}
$$

Quick Recap of eV

eV \rightarrow electron - volts

Unit of Energy
$\{$ Energy in eV $\}=\frac{\{\text { Energy in } J\}}{1.60 \times 10^{-19}}$

IB Physics Data Booklet

Sub-topic 7.1 - Discrete energy and radioactivity		Sub-topic 7.2 - Nuclear reactions
$E=h f$ $\lambda=\frac{h c}{E}$	$\Delta E=\Delta m c^{2}$	

Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
Coulomb constant	k	$8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}$
Permittivity of free space	ε_{0}	$8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
Permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Tm} \mathrm{A}^{-1}$
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$

Try This...

Calculate the energy carried by one photon of microwaves of wavelength 9 cm (as might be used in wifi signals) in J and $e V$

\downarrow
 0.09 m

$$
E=\frac{h c}{\lambda}=\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{(0.09)}=2.21 \times 10^{-24} \mathrm{~J}
$$

$$
\frac{1.99 \times 10^{-24}}{1.60 \times 10^{-19}}=1.38 \times 10^{-5} \mathrm{eV}
$$

Shortcut time ©

Unit conversions

Since h and c are both constants, $h c$ acts as a constant as well

```
1 radian (rad) }\equiv\frac{18\mp@subsup{0}{}{\circ}}{\pi
Temperature (K) = temperature ( }\mp@subsup{}{}{\circ}\textrm{C})+27
1 light year (ly) = 9.46 < 1015 m
1 parsec (pc) = 3.26 ly
1 astronomical unit (AU)=1.50 }\times10\mp@subsup{0}{}{11}\textrm{m
1 kilowatt-hour (kWh)=3.60 }\times1\mp@subsup{0}{}{6}\textrm{J
hc}=1.99\times1\mp@subsup{0}{}{-25}\textrm{J m}=1.24\times1\mp@subsup{0}{}{-6}\textrm{eV m
```

$$
E=\frac{h c}{\lambda}
$$

$$
\frac{1.99 \times 10^{-25} \mathrm{~J} \mathrm{口}}{0.09 \mathrm{pr}}=2.21 \times 10^{-24} \mathrm{~J}
$$

$$
\frac{1.24 \times 10^{-6} \mathrm{eV} \mathrm{p1}}{0.09 \mathrm{x} 1}=1.38 \times 10^{-5} \mathrm{eV}
$$

Energy Levels

Electrons in an atom exist at discrete energy levels

Energy Levels

A photon is emitted whenever an electron transitions from one energy level down to a lower energy level

How many different transitions are possible between these four energy levels?

Energy Levels

$n=\infty$	0.00 eV
$n=5$	-0.54 eV
$n=4$	-0.85 eV
$n=3$	$-1.51 \mathrm{eV}$
$n=2$	$-3.40 \mathrm{eV}$

Excited States

$n=1$
$-13.6 \mathrm{eV}$
Ground State

Energy Transitions

Different Energy transitions result in different energies (wavelengths) of light that are absorbed or emitted

Continuous Spectrum

When white light from the sun passes through a prism, the light is dispersed into its component colors in a continuous spectrum

Emission Spectrum

If an electric current is passed through an element in the form of a low-pressure gas, it will produce its own unique emission spectrum

Emission Spectrum

These spectra can be used to identify elements like a fingerprint

These are known as Line Spectra

Hydrogen

Neon

Absorption Spectrum

If white light is passed through a sample of gaseous atoms or molecules, it is found that the light of certain wavelengths is missing

Absorption Spectrum

HYDROGEN SPECTRUM

Emission Spectrum

The emission and absorption spectra are negative images of each other

THE
 ELECTROMAGNETIC SPECTRUM

THESE WAVES TRAVEL THROUGH THE ELECTROMAGNETIC FIELD. THEY WERE FORMERLY CARRED BYTHE AETHER, WHICH WAS DECOMMISSIONED IN 1897 DUE TO BUDGET CUTS.

Calculating Wavelength Emitted

Try This...

What is the wavelength emitted?

$$
\begin{gathered}
E=3.40-0.85=2.55 \mathrm{eV} \\
\lambda=\frac{1.24 \times 10^{-6} \mathrm{e}^{\boxed{V}} \mathrm{~m}}{2.55 \mathrm{e}^{\boxed{V}}}=\begin{array}{c}
4.86 \times 10^{-7} \mathrm{~m} \\
\downarrow \\
486 \mathrm{~nm}
\end{array}
\end{gathered}
$$

$$
\lambda=\frac{h c}{E} \quad \begin{array}{|c|c|c}
\hline h c & 1.99 \times 10^{-25} \mathrm{~J} \mathrm{~m} & 1.24 \times 10^{-6} \mathrm{eV} \mathrm{~m}
\end{array}
$$

Working Backwards...

What is the energy in eV for a 434 nm blue emission line?

$$
434 \times 10^{-9} \mathrm{~m}
$$

Hydrogen emission spectrum in the visible region

$$
E=\frac{h c}{\lambda}=\frac{1.24 \times 10^{-6} \mathrm{eV} \mathrm{mi}}{434 \times 10^{-9} \mathrm{~m}}=2.86 \mathrm{eV} \quad \lambda=\frac{h c}{E}
$$

$$
\begin{array}{l|l|l}
h c & 1.99 \times 10^{-25} \mathrm{~J} \mathrm{~m} & 1.24 \times 10^{-6} \mathrm{eV} \mathrm{~m}
\end{array}
$$

Working Backwards...

Draw in the Energy Transition for a 434 nm blue emission line?

What transition has an energy difference of 2.86 eV ?

$$
E=3.40-0.54=2.86 \mathrm{eV}
$$

틍
0
0

Particles and the Standard Model

IB PHYSICS | ATOMIC PHYSICS

What is the "Fundamental Particle"?

Fundamental Particles

Charge	Quarks			Baryon Number		
$\frac{2}{3}$	u	c	t	$\frac{1}{3}$		
$-\frac{1}{3}$	d	s	b	$\frac{1}{3}$		All quarks have a strangeness number of 0 except the
:---:						
strange quark that has a strangeness number of -1						

Charge	Leptons				
-1	e	μ	τ		
0	v_{e}	v_{μ}	v_{τ}		All leptons have a lepton number of 1 and
:---					
antileptons have a lepton number of -1					

Symbol	Name	Symbol	Name
u	Up	e	Electron
d	Down	μ	Muon
c	Charm	τ	Tau
s	Strange	v_{e}	Electron Neutrino
t	Top	v_{μ}	Muon Neutrino
b	Bottom	v_{τ}	Tau Neutrino

Antiparticles have the opposite charge as their corresponding particle and have a bar over their symbol

Symbol	Name	Charge
s	Strange	$-\frac{1}{3}$
\bar{s}	Antistrange	$+\frac{1}{3}$

IB Physics Data Booklet

Sub-topic 7.1 - Discrete energy and radioactivity	Sub-topic $7.2-$ Nuclear reactions
$E=h f$	$\Delta E=\Delta m c^{2}$
$\lambda=\frac{h c}{E}$	

Sub-topic 7.3 - The structure of matter

Charge	Quarks			Baryon number
$\frac{2}{3} e$	u	c	t	$\frac{1}{3}$
$\frac{1}{3} e$	d	s	b	$\frac{1}{3}$

All quarks have a strangeness number of 0 except the strange quark that has a

Charge	Leptons		
-1	e	μ	τ
0	ve_{e}	v_{μ}	v_{τ}

All leptons have a lepton number of 1 and antileptons have a lepton number of -1

	Gravitational	Weak	Electromagnetic	Strong
Particles experiencing	All	Quarks, leptons	Charged	Quarks, gluons
Particles mediating	Graviton	$\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{0}$	γ	Gluons

Fundamental Particles

Symbol	Name	Charge	Baryon \#
u	Up	$+\frac{2}{3}$	$\frac{1}{3}$
d	Down	$-\frac{1}{3}$	$\frac{1}{3}$
c	Charm	$+\frac{2}{3}$	$\frac{1}{3}$
s	Strange	$-\frac{1}{3}$	$\frac{1}{3}$
t	Top	$+\frac{2}{3}$	$\frac{1}{3}$
b	Bottom	$-\frac{1}{3}$	$\frac{1}{3}$

Symbol	Name	Charge	Lepton \#
e	Electron	-1	1
μ	Muon	-1	1
τ	Tau	-1	1
v_{e}	Electron Neutrino	0	1
v_{μ}	Muon Neutrino	0	1
v_{τ}	Tau Neutrino	0	1

| Symbol | Name | Charge | Baryon \# | Symbol | Name | | Charge |
| :---: | :--- | :--- | :---: | :---: | :--- | :---: | :---: | Lepton \#

Classifying Particles

Leptons

Electrons
Muons
Tau
Neutrinos

Hadrons

Mesons
Pion (π)
Kaon (K)
Others

Baryons

Proton
Neutron
Others

Baryons

All Baryons are formed from a combination of 3 quarks or antiquarks
Proton
$+1$
Rule: Charge must be an integer value (-1, 0 , or +1)
(uud)
Up Quark
u Neutron

d

0
(udd)

Mesons

All Mesons are formed from a combination of a quark and antiquark

Rule: Charge must be an integer value ($-1,0$, or +1)

Charge	Quarks			Baryon Number
$\frac{2}{3}$	u	c	t	$\frac{1}{3}$
$-\frac{1}{3}$	d	s	b	$\frac{1}{3}$

All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of -1

Quark Confinement

Quarks have never been observed on their own

The amount of energy required to overcome the strong nuclear force holding the quarks together gets converted into mass and forms a new quark pair

Conservation

For an interaction to be possible, the following must stay conserved:

Baryon \#	Lepton \#	Charge	Strangeness
	$\boldsymbol{n} \rightarrow \boldsymbol{0}+\boldsymbol{e}^{-}+\overline{\boldsymbol{V}}_{\boldsymbol{e}}$		
Baryon \#	1	1	0
Lepton \#	0	0	1
Charge	0	1	-1

This interaction is valid because all properties are conserved

Conservation

$$
p+e^{-} \rightarrow n+v_{e}
$$

Baryon \# Lepton \# Charge

$$
\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
+1 & -1 & \boldsymbol{p} \rightarrow \boldsymbol{e}^{+}+\bar{v}_{e}
\end{array}
$$

Baryon \# Lepton \# Charge

1	1	0	0
0	0	-1	-1
0	+1	+1	0

Yes
Valid

No
Invalid

Exchange Particles

At the fundamental level of particle physics, forces are explained in terms of the transfer of exchange particles (gauge bosons) between the two particles experiencing the force

Attraction

These interactions are not observable, so we call them virtual particles

Types of Forces

	Gravitational	Weak	Electromagnetic	Strong
Particles experiencing	All	Quarks, leptons	Charged	Quarks, gluons
Particles mediating	Graviton	$\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{0}$	γ photon	Gluons

Weakest
Strongest

Sample IB Question

26. Which of the following lists three fundamental forces in increasing order of strength?
A. electromagnetic, gravity, strong nuclear
B. weak nuclear, gravity, strong nuclear
C. gravity, weak nuclear, electromagnetic
D. electromagnetic, strong nuclear, gravity

	Gravitational	Weak	Electromagnetic	Strong
Particles experiencing	All	Quarks, leptons	Charged	Quarks, gluons
Particles mediating	Graviton	$\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{0}$	γ	Gluons

The Standard Model

CERN: The Standard Model Of Particle Physics

Sample IB Question

27. For which reason were quarks first introduced?
A. To explain the existence of isotopes
B. To describe nuclear emission and absorption spectra
C. To account for patterns in properties of elementary particles
D. To account for the missing energy and momentum in beta decay

The Standard Model

Feynman Diagrams \& the Higgs Boson

IB PHYSICS | ATOMIC PHYSICS

IB Physics Data Booklet

Sub-topic 7.1 - Discrete energy and radioactivity	Sub-topic $7.2-$ Nuclear reactions
$E=h f$	$\Delta E=\Delta m c^{2}$
$\lambda=\frac{h c}{E}$	

Sub-topic 7.3 - The structure of matter

Charge	Quarks			Baryon number
$\frac{2}{3} e$	u	c	t	$\frac{1}{3}$
$\frac{1}{3} e$	d	s	b	$\frac{1}{3}$

All quarks have a strangeness number of 0 except the strange quark that has a

Charge	Leptons		
-1	e	μ	τ
0	v_{e}	v_{μ}	v_{τ}

All leptons have a lepton number of 1 and antileptons have a lepton number of -1

	Gravitational	Weak	Electromagnetic	Strong
Particles experiencing	All	Quarks, leptons	Charged	Quarks, gluons
Particles mediating	Graviton	$\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{0}$	γ	Gluons

The Standard Model

Standard Model of Elementary Particles

The Large Hadron Collider

, p proctom) , ion , neutrons , p (antiproton) -++i- protan/antiproton conversion , neutrnos be electron
LHC Large Hadron Collider SPS Super Protan Synchrotron PS Protan Synchrotron
A. Antiproton Docelerator CTFF Clic Test Focily CNGS Cem Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy lon Ring LINAC LINear ACcelerator nToF Neutrons Time of fight

The Large Hadron Collider

The Higgs Boson

TELL US ABOUT YOUR PROPOSAL

‥) WE'RE REQUESTNG $\$ 3$ BILLION IN FUNDNG TO FIND THE HIGGS BOSON.

...WAIT. DIDN'T YOU ALREADY FIND ITA
YEAR OR TWO AGO?

DONT TELL US YOU LOST IT ALREADY. . LOOK. IN OUR DEFENSE ITS REACLY SMALL.

Feynman Diagrams

Useful to represent, analyze, and predict particle interactions

Feynman Diagrams are like Comics

Set Up
Event

An electron and positron (antielectron) annihilate into a photon

"The Characters"

Matter Particle

Antimatter Particle

Representing Time

An electron and positron (antielectron) annihilate into a photon

Time

Match these!

Time

Time

a photon spontaneously "pair produces" an electron and positron
a positron absorbs a photon and keeps going
an electron emits a photon and keeps going
an electron and positron annihilate into a photon

Junction Conservation

Every junction will have two lines with arrows (one pointing in, one pointing out) meeting a single exchange particle and all properties are conserved before/after

Time

Beta-Negative Decay

$$
n \rightarrow p+e^{-}+\bar{v}_{e}
$$

Time

Beta-Positive Decay

$p \rightarrow n+e^{+}+v_{e}$

Time

