The Scale of Astrophysics

IB PHYSICS | ASTROPHYSICS

IB Physics Data Booklet

Sub-topic D.1 – Stellar quantities	Sub-topic D.2 – Stellar characteristics and stellar evolution
$d \text{ (parsec)} = \frac{1}{p \text{ (arc-second)}}$ $L = \sigma AT^4$	$\lambda_{\max}T = 2.9 \times 10^{-3} \text{ m K}$ $L \propto M^{3.5}$
$b = \frac{L}{4\pi d^2}$ Sub-topic D.3 – Cosmology	Sub-topic D.5 – Further cosmology (HL only)
$z = \frac{\Delta \lambda}{\lambda_0} \approx \frac{v}{c}$	$v = \frac{4\pi G\rho}{r}$
$z = \frac{R}{R_0} - 1$ $v = H_0 d$	$\int_{-\infty}^{-\infty} \frac{3H^2}{8\pi G}$
$T \approx \frac{1}{H_0}$	

Anything look familiar?

It's a Great Big Universe...

Animaniacs - Yakko's Universe

The Solar System

	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
Diameter [km]	4,880	12,104	12,756	6,787	142,800	120,000	51,800	49,500
Distance to Sun [× 10 ⁸ m]	58	107.5	149.6	228	778	1,427	2,870	4,497

Poor Pluto...:'(

Definition of a Planet (as of 2006)

A celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its selfgravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighbourhood around its orbit.

Measuring Distances

Speed of Light: c =

How far is one light year (ly)

Measuring Distances

Average Distance between the Earth and the Sun 1.5 × 10¹¹ m

Measuring Distances

$1 \text{ light year (ly)} = 9.46 \times 10^{15} \text{ m}$

The distance that light travels in an earth year

The average distance between the earth and the sun

Measuring Angles

Parsecs

1 parsec (pc) = 3.26 ly

distance at which the mean radius of the earth's orbit subtends an angle of one second of arc.

parsec stands for parallax angle of one second

Parsecs

Why is this claim a little odd?

"It's the ship that made the Kessel run in less than 12 Parsecs."

IB Physics Data Booklet

Unit conversions

1 radian (rad) $\equiv \frac{180^{\circ}}{\pi}$

Temperature (K) = temperature ($^{\circ}$ C) + 273

1 light year (ly) = 9.46×10^{15} m

1 parsec (pc) = 3.26 ly

1 astronomical unit (AU) = 1.50×10^{11} m

1 kilowatt-hour (kWh) = 3.60×10^6 J

 $hc = 1.99 \times 10^{-25} \text{ Jm} = 1.24 \times 10^{-6} \text{ eVm}$

Stefan–Boltzmann constant	σ	$5.67 \times 10^{-8}Wm^{-2}K^{-4}$
Coulomb constant	k	$8.99\times 10^9Nm^2C^{-2}$
Permittivity of free space	ε	$8.85\times 10^{_{-12}}\text{C}^{_2}\text{N}^{_{-1}}\text{m}^{_{-2}}$
Permeability of free space	μ_0	$4\pi \times 10^{-7}TmA^{-1}$
Speed of light in vacuum	с	$3.00 imes 10^8 m s^{-1}$
Planck's constant	h	6.63×10^{-34} J s
Elementary charge	е	$1.60 imes 10^{-19}$ C

The Black Hole – by the numbers

THE M87 BLACK HOLE AND OUR SOLAR SYSTEM SURGE NSF

SIZE COMPARISON:

Just bigger than our solar system 6.5 billion times the mass of the Sun 55 million light years from Earth

The Science Behind the Picture

Remember: 1° = 3600 arcseconds

1 arcsecond = 1,000,000 µas

*60 µas is about the same as resolving a picture of an orange sitting on the surface of the moon

The Science Behind the Picture

Each telescope of the EHT produced huge amounts of data, which were

helium-filled hard drives and flown

to specialized supercomputers at

the Max Planck Institute for Radio

Astronomy and MIT Haystack Observatory to be combined

into an image.

stored on high-performance

Measurements

Each observation day, a

telescope site tied to the EHT captures roughly 350 terabytes of

the Large Hadron Collider.

data. That's around 10 times the

amount of data collected daily at

Reconstruction

