Stellar Quantities

IB PHYSICS | ASTROPHYSICS

Measuring Distances

1 light year (ly) = 9.46×10^{15} m

The distance that light travels in an earth year

1 astronomical unit (AU) = 1.50×10^{11} m

The average distance between the earth and the sun

1 parsec (pc) = 3.26 ly

distance at which the mean radius of the earth's orbit subtends an angle of one second of arc.

IB Physics Data Booklet

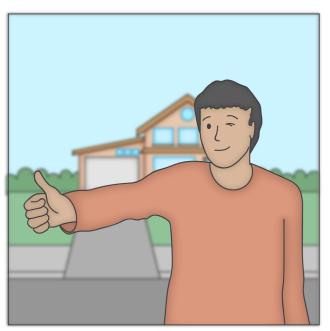
Unit conversions

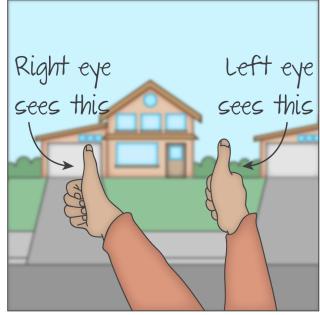
1 radian (rad)
$$\equiv \frac{180^{\circ}}{\pi}$$

Temperature (K) = temperature ($^{\circ}$ C) + 273

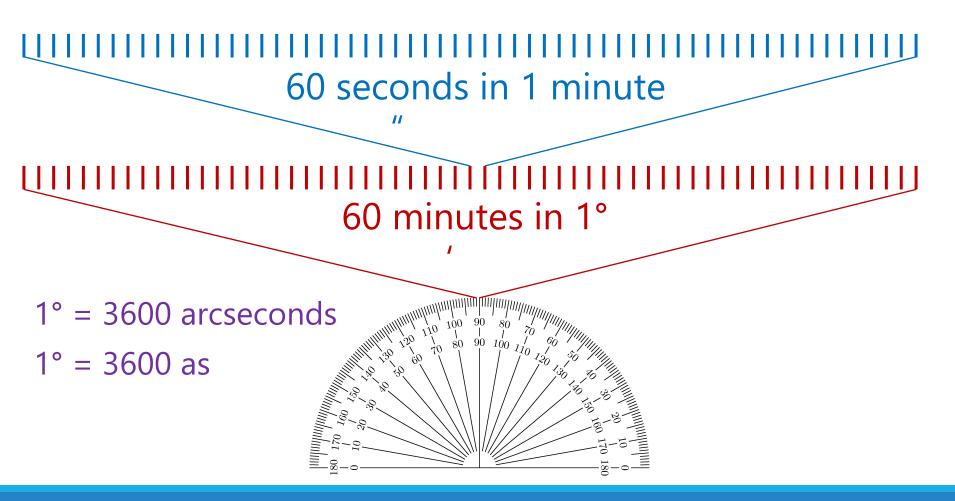
1 light year (ly) =
$$9.46 \times 10^{15}$$
 m

1 parsec (pc) = 3.26 ly

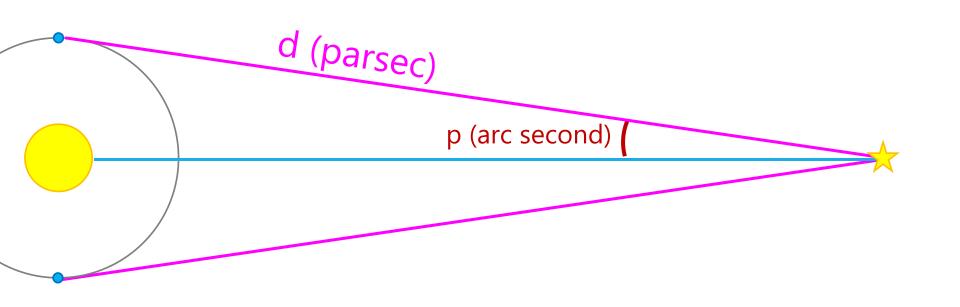

1 astronomical unit (AU) = 1.50×10^{11} m


1 kilowatt-hour (kWh) = 3.60×10^6 J

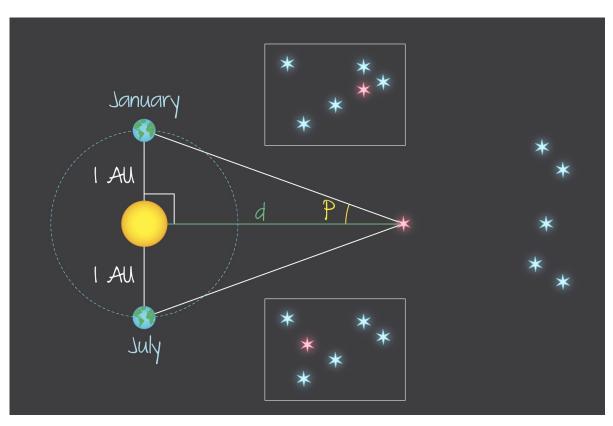
$$hc = 1.99 \times 10^{-25} \text{ J m} = 1.24 \times 10^{-6} \text{ eV m}$$


Calculating Stellar Quantities

Stellar Parallax



Measuring Angles


Stellar Parallax

$$d (parsec) = \frac{1}{p (arc second)}$$

Stellar Parallax

The angle **must** be measured to a very distant field of other stars

*The parallax method only works for stars that are relatively close to earth

$$d (parsec) = \frac{1}{p (arc second)}$$

The star Betelgeuse has a parallax angle of 7.7×10^{-3} arc seconds. Calculate its distance. 1 light year (ly) = 9.46×10^{15} m

1 parsec (pc) = 3.26 ly

arc-seconds \rightarrow parsecs \rightarrow light years \rightarrow meters

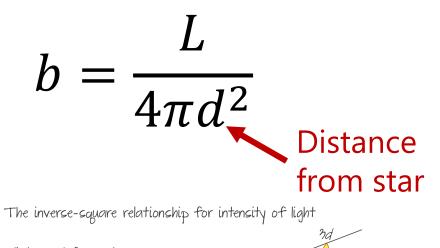
$$d = \frac{1}{p} = \frac{1}{7.7 \times 10^{-3} \ arc \ seconds} = 129.9 \ parsecs$$

$$\frac{3.26 \text{ ly}}{1 \text{ pc}} \times \frac{9.46 \times 10^{15} \text{ m}}{1 \text{ ly}} = \frac{4.0 \times 10^{18} \text{ m}}{1 \text{ m}}$$

Distance

Brightness

Luminosity

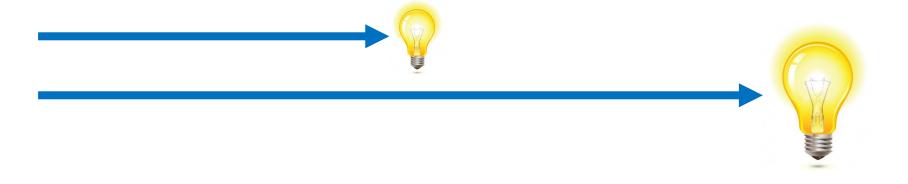

Temperature

Radius

Luminosity vs Brightness

Luminosity	L	Brightness	b
Power Emitted Watts [W]		Intensity W/m ² or W m ⁻²	
		*Depends on the observer distance	

Brightness



	U	,	, ,	21
Sphere, distance d	from star			3d
,		2 <i>d</i>		IA
<i>d</i> \	d_		A	A
		14		I
Star	A	- / A	A	1AI
		A		+ IA
			A	A
	Intensity	∝ 		
	1	a ⁻		

Distance	Brightness	
X	b	
2x	b/4	
3x	b/9	
4x	b/16	

Same Brightness, Different Stars

It is possible for stars to have the same brightness but have different distances and luminosities

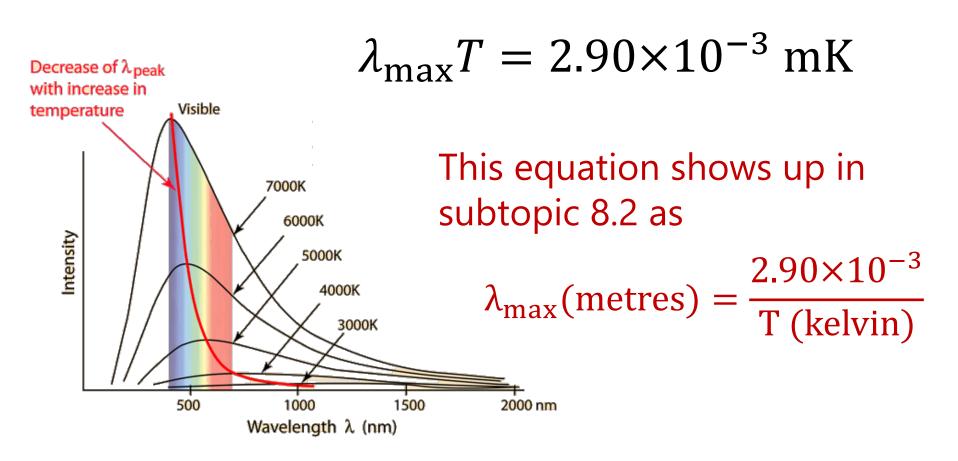
The star Betelgeuse has an apparent brightness of 2.0×10^{-7} W m⁻². Calculate its luminosity.

$$d = 4.0 \times 10^{18} \text{ m}$$

$$b = \frac{L}{4\pi d^2}$$

$$L = (b)(4\pi d^2)$$

$$= (2.0 \times 10^{-7})(4\pi (4.0 \times 10^{18})^2)$$


$$= 4.0 \times 10^{31} \text{ W}$$

Brightness Luminosity Distance

Calculating Stellar Quantities

- Distance
- Brightness
- Luminosity
- Temperature
- Radius

Wien's Displacement Law

*Note: This assumes perfect blackbody radiation

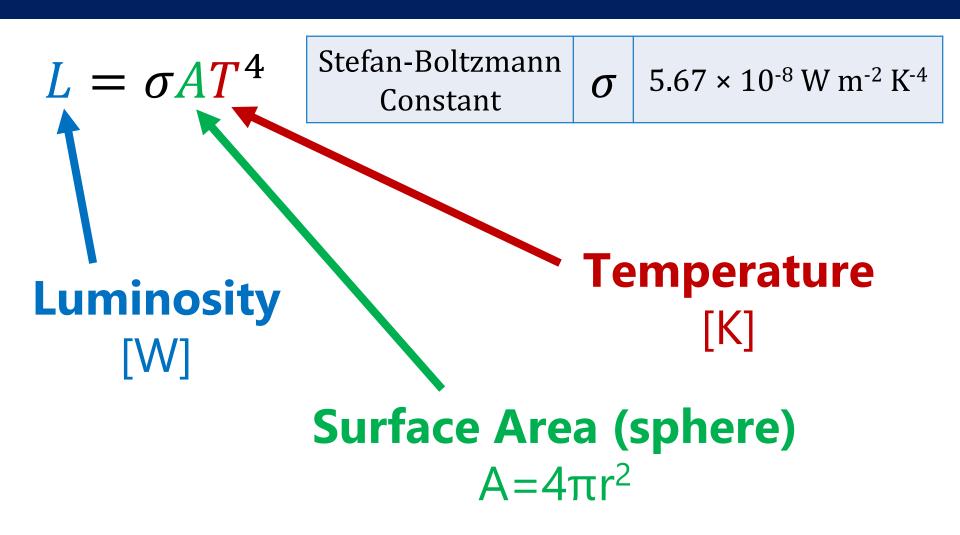
The star Betelgeuse has a max wavelength of 828.6 nm.

What is its surface temperature?

$$\lambda_{\text{max}}T = 2.90 \times 10^{-3} \text{ mK}$$

$$\Gamma = \frac{2.90 \times 10^{-3} \text{ mK}}{\lambda_{\text{max}}} = \frac{2.90 \times 10^{-3} \text{ mK}}{828.6 \times 10^{-9}} = \boxed{3500 \text{ K}}$$

Distance


Brightness

Luminosity

Temperature

Radius

Luminosity

Knowing everything else that we know about Betelgeuse, calculate the average radius of the star.

$$L = 4.0 \times 10^{31} W$$

$$T = 3,500 K$$

$$L = \sigma A T^4$$

$$4.0 \times 10^{31} = (5.67 \times 10^{-8})(4\pi r^2)(3500)^4$$

$$r = 6.12 \times 10^{11}$$

IB Physics Data Booklet

Sub-topic D.1 – Stellar quantities	Sub-topic D.2 – Stellar characteristics and stellar evolution
$d \text{ (parsec)} = \frac{1}{p \text{ (arc-second)}}$ $L = \sigma A T^4$ $b = \frac{L}{4\pi d^2}$	$\lambda_{\text{max}}T = 2.9 \times 10^{-3} \text{ m K}$ $L \propto M^{3.5}$
Sub-topic D.3 – Cosmology	Sub-topic D.5 – Further cosmology (HL only)
$z = \frac{\Delta \lambda}{\lambda_0} \approx \frac{v}{c}$ $z = \frac{R}{R_0} - 1$ $v = H_0 d$ $T \approx \frac{1}{H_0}$	$v = \sqrt{\frac{4\pi G\rho}{3}}r$ $\rho_{\rm c} = \frac{3H^2}{8\pi G}$

Distance

Brightness

Luminosity

Temperature

Radius

All together now!

Brightness (W m ⁻²)	1.2 × 10 ⁻⁷ W m ⁻²	
Max Wavelength (m)	292 × 10 ⁻⁹ m	
Distance (m)	8.14 × 10 ¹⁶ m	
Luminosity (W)	9.98 × 10 ²⁷ W	
Temperature (K)	9930 K	
Radius (m)	1.2 × 10 ⁹ m	

The brightest star in the sky is known as Sirius and has a parallax angle of 0.379 arc seconds, apparent brightness of 1.2×10^{-7} W m⁻², and a max wavelength of 292 nm. Complete this table of stellar properties.

$$d = \frac{1}{p} = \frac{1}{0.379 \ arc \ seconds} = 2.64 \ parsecs$$

$$2.64 \ pc \times \frac{3.26 \ ly}{1 \ pc} \times \frac{9.46 \times 10^{15} \ m}{1 \ ly} = 8.14 \times 10^{16} \ m$$

$$L = (b)(4\pi d^2) = (1.2 \times 10^{-7})(4\pi (8.14 \times 10^{16})^2) = 9.98 \times 10^{27} \ W$$

$$T = \frac{2.90 \times 10^{-3} \ mK}{\lambda_{max}} = \frac{2.90 \times 10^{-3} \ mK}{292 \times 10^{-9}} = 9930 \ K$$

$$L = \sigma A T^4 \qquad 9.98 \times 10^{27} = (5.67 \times 10^{-8})(4\pi r^2)(9930)^4$$

$$r = 1.2 \times 10^9 \ m$$