Stellar Quantities

IB PHYSICS | ASTROPHYSICS

Measuring Distances

1 light year (ly) $=9.46 \times 10^{15} \mathrm{~m}$

The distance that light travels in an earth year
1 astronomical unit $(A U)=1.50 \times 10^{11} \mathrm{~m}$
The average distance between the earth and the sun
1 parsec (pc) = 3.26 ly

distance at which the mean radius of the earth's orbit subtends an angle of one second of arc.

IB Physics Data Booklet

Unit conversions

1 radian $(\mathrm{rad}) \equiv \frac{180^{\circ}}{\pi}$
Temperature $(\mathrm{K})=$ temperature $\left({ }^{\circ} \mathrm{C}\right)+273$
1 light year $(\mathrm{ly})=9.46 \times 10^{15} \mathrm{~m}$
1 parsec $(\mathrm{pc})=3.26 \mathrm{ly}$
1 astronomical unit $(\mathrm{AU})=1.50 \times 10^{11} \mathrm{~m}$
1 kilowatt-hour $(\mathrm{kWh})=3.60 \times 10^{6} \mathrm{~J}$
$h c=1.99 \times 10^{-25} \mathrm{~J} \mathrm{~m}=1.24 \times 10^{-6} \mathrm{eV} \mathrm{m}$

Calculating Stellar Quantities

Distance
Brightness
Luminosity
Temperature
Radius

Stellar Parallax

Measuring Angles

Distance Brightness Luminosity Temperature Radius

Stellar Parallax

Distance
Brightness
Luminosity
Temperature
Radius

Stellar Parallax

The angle must be measured to a very distant field of other stars

*The parallax method only works for stars that are relatively close to earth

Brightness
Luminosity

$$
\text { Try This... | \#1 } \quad d \text { (parsece }=\frac{1}{p(\text { arc second })}
$$

The star Betelgeuse has a parallax angle of 7.7×10^{-3} arc seconds. Calculate its distance.

$$
\begin{aligned}
& 1 \text { light year }(\mathrm{ly})=9.46 \times 10^{15} \mathrm{~m} \\
& 1 \text { parsec }(\mathrm{pc})=3.26 \mathrm{ly}
\end{aligned}
$$

arc-seconds \rightarrow parsecs \rightarrow light years \rightarrow meters
$d=\frac{1}{p}=\frac{1}{7.7 \times 10^{-3} \operatorname{arcseconds}}=129.9$ parsecs
$129.9 \mathrm{pc} \times \frac{3.26 \mathrm{ly}}{1 \mathrm{pc}} \times \frac{9.46 \times 10^{15} \mathrm{~m}}{1 \mathrm{ly}}=$

Luminosity vs Brightness

Luminosity

 L Brightness
Intensity

Watts [W]

$\mathrm{W} / \mathrm{m}^{2}$ or $\mathrm{W} \mathrm{m}^{-2}$
*Depends on the
observer distance

Brightness

$$
b=\frac{L}{4 \pi d^{2}} \underset{\substack{\text { Distance } \\ \text { from star }}}{ }
$$

Distance	Brightness
X	b

The inverse-square relationship for intensity of light

$2 x$ b/4
$3 x$ b/9
$4 x$ b/16

Same Brightness, Different Stars

It is possible for stars to have the same brightness but have different distances and luminosities

Try This... | \#2

The star Betelgeuse has an apparent brightness of $2.0 \times 10^{-7} \mathrm{~W} \mathrm{~m}^{-2}$. Calculate its luminosity.

$$
\begin{aligned}
d= & 4.0 \times 10^{18} \mathrm{~m} \\
L & =(\mathrm{b})\left(4 \pi d^{2}\right) \\
& =\left(2.0 \times 10^{-7}\right)\left(4 \pi\left(4.0 \times 10^{18}\right)^{2}\right) \\
& =4.0 \times 10^{31} \mathrm{~W}
\end{aligned}
$$

Calculating Stellar Quantities

∇ Distance
\boxtimes Brightness
\boxtimes Luminosity
\square Temperature
\square Radius

Wien's Displacement Law

Decrease of $\lambda_{\text {peak }}$ with increase in

$\lambda_{\max } T=2.90 \times 10^{-3} \mathrm{mK}$

This equation shows up in subtopic 8.2 as

$$
\lambda_{\max }(\text { metres })=\frac{2.90 \times 10^{-3}}{\mathrm{~T}(\text { kelvin })}
$$

*Note: This assumes perfect blackbody radiation

Try This... | \#3

The star Betelgeuse has a max wavelength of 828.6 nm . What is its surface temperature?

$$
828.6 \times 10^{-9} \mathrm{~m}
$$

$\lambda_{\text {max }} T=2.90 \times 10^{-3} \mathrm{mK}$
Solve for T

$$
\mathrm{T}=\frac{2.90 \times 10^{-3} \mathrm{mK}}{\lambda_{\max }}=\frac{2.90 \times 10^{-3} \mathrm{mK}}{828.6 \times 10^{-9}}=3500 \mathrm{~K}
$$

Luminosity

Try This... | \#4

Knowing everything else that we know about Betelgeuse, calculate the average radius of the star.

$$
\begin{aligned}
& \mathrm{L}=4.0 \times 10^{31} \mathrm{~W} \\
& \mathrm{~T}=3,500 \mathrm{~K}
\end{aligned}
$$

$$
L=\sigma A T^{4}
$$

$$
4.0 \times 10^{31}=\left(5.67 \times 10^{-8}\right)\left(4 \pi r^{2}\right)(3500)^{4}
$$

$$
r=6.12 \times 10^{11}
$$

IB Physics Data Booklet

Sub-topic D.1 - Stellar quantities	Sub-topic D.2 - Stellar characteristics and stellar evolution
d (parsec) $=\frac{1}{p \text { (arc-second) }}$	$\lambda_{\max } T=2.9 \times 10^{-3} \mathrm{~m} \mathrm{~K}$ $L \propto M^{3.5}$
$L=\sigma A T^{4}$ $b=\frac{L}{4 \pi d^{2}}$	
Sub-topic D.3-Cosmology	Sub-topic D.5 - Further cosmology (HL only)
$z=\frac{\Delta \lambda}{\lambda_{0}} \approx \frac{v}{c}$	$\rho_{\mathrm{c}}=\frac{R}{\frac{R H^{2}}{8 \pi G}} r$
$z=\frac{R}{R_{0}}-1$	
$v=H_{0} d$	
$T \approx \frac{1}{H_{0}}$	

All together now!

Brightness (W m²)	$\mathbf{1 . 2 \times 1 0 ^ { - 7 } \mathbf { ~ W ~ m } ^ { - 2 }}$
Max Wavelength (m)	$292 \times 10^{-9} \mathrm{~m}$
Distance (m)	$8.14 \times 10^{16} \mathrm{~m}$
Luminosity (W)	$9.98 \times 10^{27} \mathrm{~W}$
Temperature (K)	9930 K
Radius (m)	$1.2 \times 10^{9} \mathrm{~m}$

The brightest star in the sky is known as Sirius and has a parallax angle of 0.379 arc seconds, apparent brightness of 1.2×10^{-7} $\mathrm{W} \mathrm{m}^{-2}$, and a max wavelength of 292 nm . Complete this table of stellar properties.

$$
\begin{aligned}
& d=\frac{1}{p}=\frac{1}{0.379 \text { arc seconds }}=2.64 \text { parsecs } \\
& 2.64 \mathrm{pc} \times \frac{3.26 \mathrm{ly}}{1 \mathrm{pc}} \times \frac{9.46 \times 10^{15} \mathrm{~m}}{1 \mathrm{ly}}=\mathbf{8 . 1 4 \times 1 0 ^ { 1 6 } \mathrm { m }} \\
& L=(\mathrm{b})\left(4 \pi d^{2}\right)=\left(1.2 \times 10^{-7}\right)\left(4 \pi\left(8.14 \times 10^{16}\right)^{2}\right)=\mathbf{9 . 9 8} \times 1 \mathbf{1 0}^{27} \mathbf{~} \mathbf{~} \\
& \mathrm{~T}=\frac{2.90 \times 10^{-3} \mathrm{mK}}{\lambda_{\max }}=\frac{2.90 \times 10^{-3} \mathrm{mK}}{292 \times 10^{-9}}=\mathbf{9 9 3 0} \mathbf{K}
\end{aligned}
$$

$$
\begin{array}{r}
L=\sigma A T^{4} \quad 9.98 \times 10^{27}=\left(5.67 \times 10^{-8}\right)\left(4 \pi r^{2}\right)(9930)^{4} \\
r=\mathbf{1 . 2} \times \mathbf{1 0}^{9} \mathbf{~ m}
\end{array}
$$

