Stellar Quantities

IB PHYSICS | ASTROPHYSICS

Measuring Distances

$1 \text{ light year (ly)} = 9.46 \times 10^{15} \text{ m}$

The distance that light travels in an earth year

1 astronomical unit (AU) = 1.50×10^{11} m

The average distance between the earth and the sun

1 parsec (pc) = 3.26 ly

distance at which the mean radius of the earth's orbit subtends an angle of one second of arc.

IB Physics Data Booklet

Unit conversions

1 radian (rad) $\equiv \frac{180^{\circ}}{\pi}$

Temperature (K) = temperature ($^{\circ}$ C) + 273

1 light year (ly) = 9.46×10^{15} m

1 parsec (pc) = 3.26 ly

1 astronomical unit (AU) = 1.50×10^{11} m

1 kilowatt-hour (kWh) = 3.60×10^6 J

 $hc = 1.99 \times 10^{-25} \text{ Jm} = 1.24 \times 10^{-6} \text{ eVm}$

Calculating Stellar Quantities

Stellar Parallax

Distance Brightness

Luminosity

Temperature

Measuring Angles

Brightness

Luminosity

Stellar Parallax

Stellar Parallax

The angle **must** be measured to a very distant field of other stars

*The parallax method only works for stars that are relatively close to earth

Brightness

Distance

Luminosity

 $d (parsec) = \frac{1}{p (arc \ second)}$

Temperature

The star Betelgeuse has a parallax angle of 7.7×10^{-3} arc seconds. Calculate its distance.

1 light year (ly) = 9.46×10^{15} m

Radius

1 parsec (pc) = 3.26 ly

arc-seconds \rightarrow parsecs \rightarrow light years \rightarrow meters

Luminosity vs Brightness

Luminosity	Brightness	

Distance Brightness

Luminosity

Temperature

Brightness

Distance

Brightness

Luminosity

Temperature

Same Brightness, Different Stars

It is possible for stars to have the same brightness but have different distances and luminosities

The star Betelgeuse has an apparent brightness of 2.0×10^{-7} W m⁻². Calculate its luminosity.

 $d = 4.0 \times 10^{18} m$

 $b = \frac{L}{4\pi d^2}$

Calculating Stellar Quantities

- **Distance**
- Brightness
- **L**uminosity
- Temperature
- **Radius**

Wien's Displacement Law

*Note: This assumes perfect blackbody radiation

Brightness

Distance

Luminosity

Temperature

Luminosity

Radius

Temperature

The star Betelgeuse has a max wavelength of 828.6 nm. What is its surface temperature?

```
\lambda_{\rm max}T = 2.90 \times 10^{-3} \, {\rm mK}
```

Brightness

Distance

Luminosity

$$L = \sigma A T^4$$

Stefan-Boltzmann Constant

 $5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ σ

Knowing everything else that we know about Betelgeuse, calculate the average radius of the star.

Luminosity

Temperature

Radius

 $L = 4.0 \times 10^{31} W$

Brightness

T = 3,500 K

Distance

IB Physics Data Booklet

Sub-topic D.1 – Stellar quantities	Sub-topic D.2 – Stellar characteristics and stellar evolution
$d \text{ (parsec)} = \frac{1}{p \text{ (arc-second)}}$ $L = \sigma AT^{4}$ $b = \frac{L}{4\pi d^{2}}$	$\lambda_{\max}T = 2.9 \times 10^{-3} \text{ m K}$ $L \propto M^{3.5}$
Sub-topic D.3 – Cosmology	Sub-topic D.5 – Further cosmology (HL only)
$z = \frac{\Delta \lambda}{\lambda_0} \approx \frac{v}{c}$ $z = \frac{R}{R_0} - 1$ $v = H_0 d$ $T \approx \frac{1}{H_0}$	$v = \sqrt{\frac{4\pi G\rho}{3}}r$ $\rho_c = \frac{3H^2}{8\pi G}$

All together now!

Brightness (W m ⁻²)	1.2 × 10 ⁻⁷ W m ⁻²
Max Wavelength (m)	
Distance (m)	
Luminosity (W)	
Temperature (K)	
Radius (m)	

Distance

The brightest star in the sky is known as Sirius and has a parallax angle of 0.379 arc seconds, apparent brightness of 1.2×10^{-7} W m⁻², and a max wavelength of 292 nm. Complete this table of stellar properties.

Radius

Brightness Luminosity Temperature