Stellar Quantities

IB PHYSICS | ASTROPHYSICS

Measuring Distances

1 light year (ly) $=9.46 \times 10^{15} \mathrm{~m}$

The distance that light travels in an earth year
1 astronomical unit $(A U)=1.50 \times 10^{11} \mathrm{~m}$
The average distance between the earth and the sun
1 parsec (pc) = 3.26 ly

distance at which the mean radius of the earth's orbit subtends an angle of one second of arc.

IB Physics Data Booklet

Unit conversions

1 radian $(\mathrm{rad}) \equiv \frac{180^{\circ}}{\pi}$
Temperature $(\mathrm{K})=$ temperature $\left({ }^{\circ} \mathrm{C}\right)+273$
1 light year $(\mathrm{ly})=9.46 \times 10^{15} \mathrm{~m}$
1 parsec $(\mathrm{pc})=3.26 \mathrm{ly}$
1 astronomical unit $(\mathrm{AU})=1.50 \times 10^{11} \mathrm{~m}$
1 kilowatt-hour $(\mathrm{kWh})=3.60 \times 10^{6} \mathrm{~J}$
$h c=1.99 \times 10^{-25} \mathrm{~J} \mathrm{~m}=1.24 \times 10^{-6} \mathrm{eV} \mathrm{m}$

Calculating Stellar Quantities

Distance
Brightness
Luminosity
Temperature
Radius

Stellar Parallax

Measuring Angles

UHI\|

 (1)

Distance
Brightness
Luminosity
Temperature
Radius

Stellar Parallax

Distance
Brightness
Luminosity
Temperature
Radius

Stellar Parallax

The angle must be measured to a very distant field of other stars

*The parallax method only works for stars that are relatively close to earth

Brightness
Luminosity

$$
\text { Try This... | \#1 } \quad d(\text { parsece })=\frac{1}{p(\text { arc second })}
$$

The star Betelgeuse has a parallax angle of 7.7×10^{-3} arc seconds. Calculate its distance.
1 light year $(\mathrm{ly})=9.46 \times 10^{15} \mathrm{~m}$
1 parsec $(\mathrm{pc})=3.26 \mathrm{ly}$
arc-seconds \rightarrow parsecs \rightarrow light years \rightarrow meters

Luminosity vs Brightness

Luminosity

Brightness

Brightness

$$
b=\frac{L}{4 \pi d^{2}}
$$

The inverse-square relationship for intensity of light

Distance
 Brightness

Distance	Brightness
X	

$2 x$
$3 x$
$4 x$

Distance
Brightness
Luminosity Temperature
Radius

Same Brightness, Different Stars

It is possible for stars to have the same brightness but have different distances and luminosities

Try This... | \#2

The star Betelgeuse has an apparent brightness of $2.0 \times 10^{-7} \mathrm{~W} \mathrm{~m}^{-2}$. Calculate its luminosity.
$d=4.0 \times 10^{18} \mathrm{~m}$

$$
b=\frac{L}{4 \pi d^{2}}
$$

Calculating Stellar Quantities

∇ Distance
\boxtimes Brightness
\boxtimes Luminosity
\square Temperature
\square Radius

Wien's Displacement Law

Decrease of $\lambda_{\text {peak }}$ with increase in

$\lambda_{\max } T=2.90 \times 10^{-3} \mathrm{mK}$

This equation shows up in subtopic 8.2 as

$$
\lambda_{\max }(\text { metres })=\frac{2.90 \times 10^{-3}}{\mathrm{~T}(\text { kelvin })}
$$

*Note: This assumes perfect blackbody radiation

Try This... | \#3

The star Betelgeuse has a max wavelength of 828.6 nm . What is its surface temperature?

$$
\lambda_{\max } T=2.90 \times 10^{-3} \mathrm{mK}
$$

Luminosity

$$
L=\sigma A T^{4}
$$

Stefan-Boltzmann $\sigma \quad 5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$

Try This... | \#4

Knowing everything else that we know about Betelgeuse, calculate the average radius of the star.
$L=4.0 \times 10^{31} \mathrm{~W}$
$T=3,500 \mathrm{~K}$

IB Physics Data Booklet

Sub-topic D.1 - Stellar quantities	Sub-topic D.2 - Stellar characteristics and stellar evolution
d (parsec) $=\frac{1}{p \text { (arc-second) }}$	$\lambda_{\max } T=2.9 \times 10^{-3} \mathrm{~m} \mathrm{~K}$ $L=\sigma A T^{4}$ $b=\frac{L}{4 \pi d^{2}}$
Sub-topic D.3-Cosmology	
$z=\frac{\Delta \lambda}{\lambda_{0}} \approx \frac{v}{c}$	$v=\sqrt{\frac{R \pi G}{3}} r$
$z=\frac{R}{R_{0}}-1$	$\rho_{\mathrm{c}}=\frac{3 H^{2}}{8 \pi G}$
$v=H_{0} d$	
$T \approx \frac{1}{H_{0}}$	

All together now!

Brightness (W m²	$\mathbf{1 . 2 \times 1 0 ^ { - 7 }} \mathbf{W ~ m}^{-2}$
Max Wavelength (m)	
Distance (m)	
Luminosity (W)	
Temperature (K)	
Radius (m)	

The brightest star in the sky is known as Sirius and has a parallax angle of 0.379 arc seconds, apparent brightness of 1.2×10^{-7} $\mathrm{W} \mathrm{m} \mathrm{m}^{-2}$, and a max wavelength of 292 nm . Complete this table of stellar properties.

