H-R Diagrams and Stellar Spectra

IB PHYSICS | ASTROPHYSICS

H-R Diagrams

H-R Diagrams

H-R Diagrams

Sizes of Stars

IB Physics Data Booklet

Sub-topic D.1 – Stellar quantities	Sub-topic D.2 – Stellar characteristics and stellar evolution
$d \text{ (parsec)} = \frac{1}{p \text{ (arc-second)}}$ $L = \sigma AT^{4}$ $b = \frac{L}{4\pi d^{2}}$	$\lambda_{\rm max}T = 2.9 \times 10^{-3} \mathrm{m K}$ $L \propto M^{3.5}$
Sub-topic D.3 – Cosmology	Sub-topic D.5 – Further cosmology (HL only)
$z = \frac{\Delta \lambda}{\lambda_0} \approx \frac{v}{c}$ R	$v = \sqrt{\frac{4\pi G\rho}{3}}r$
$z = \frac{R}{R_0} - 1$ $v = H_0 d$	$\rho_{\rm c} = \frac{3H^2}{8\pi G}$
$T \approx \frac{1}{H_0}$	

H-R Diagram for Calculating Distance

The maximum wavelength of a distant star is measured to be 600 nm, suggesting that it has a temperature of ~4800 K. If this star has a brightness of 1.0×10^{-12} W m⁻², what is its distance from Earth?

 $L_{sun} = 3.84 \times 10^{24} W$

Try This

The maximum wavelength of a distant star is measured to be 400 nm. If this star has a brightness of 0.5×10^{-12} W m⁻², what is its distance from Earth?

 $L_{sun} = 3.84 \times 10^{24} W$

Mass-Luminosity Relationship

5

4

3

2

0

0

Log L/L_{sun}

For stars on the main sequence, there is a relationship between luminosity and mass

 $L \propto M^{3.5}$

0.5

Log M/M

Mass-luminosity relation

1.0

15

IB Physics Data Booklet

Sub-topic D.1 – Stellar quantities	Sub-topic D.2 – Stellar characteristics and stellar evolution
$d \text{ (parsec)} = \frac{1}{p \text{ (arc-second)}}$ $L = \sigma AT^{4}$ $b = \frac{L}{4\pi d^{2}}$	$\lambda_{\max}T = 2.9 \times 10^{-3} \text{ m K}$ $L \propto M^{3.5}$
Sub-topic D.3 – Cosmology	Sub-topic D.5 – Further cosmology (HL only)
$z = \frac{\Delta \lambda}{\lambda_0} \approx \frac{v}{c}$ $z = \frac{R}{R_0} - 1$ $v = H_0 d$ $T \approx \frac{1}{H_0}$	$v = \sqrt{\frac{4\pi G\rho}{3}}r$ $\rho_{\rm c} = \frac{3H^2}{8\pi G}$

Continuous Spectrum

When white light from the sun passes through a prism, the light is dispersed into its component colors in a continuous spectrum

Emission Spectrum

If an electric current is passed through an element in the form of a low-pressure gas, it will produce its own unique emission spectrum

Emission Spectrum

These spectra can be used to identify elements like a fingerprint

Hydrogen						
Sodium						
Helium						
Neon						
Mercury						
			1	1		1
650	600	550 V	500 Vavelength (nm	450 1)	400	350

Absorption Spectrum

If white light is passed through a sample of gaseous atoms or molecules, it is found that the light of certain wavelengths is missing

Absorption Spectrum

HYDROGEN SPECTRUM

Stellar Spectra

Studying the Spectra of Stars can help determine what the stars are made of

Are these Emission Spectra or Absorption Spectra?

Stellar Spectra | Try it out

Compare the spectra of the stars with the known absorption spectra of different elements to determine the composition of the stars

