Astrophysics Design Problem

You see two stars in the night sky that have the exact same brightness. Choose a star \#1 calculate properties so you can design a star \#2 so that it has the same brightness.

1 light year $(\mathrm{ly})=9.46 \times 10^{15} \mathrm{~m}$	1 parsec $(\mathrm{pc})=3.26 \mathrm{ly}$		$\sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$	
$d($ parsec $)=\frac{1}{p(\text { arcsecond })}$	$L=\sigma A T^{4}$	$b=\frac{L}{4 \pi d^{2}}$	$\lambda_{\max } T=2.9 \times 10^{-3}$	

Star \#1 (circle one)

	Sirius B	Altair	$\mathbf{6 1 ~ C y g n i ~ A ~}$	Barnard's Star			
Parallax Angle	0.375 arcseconds	0.198 arcseconds	0.294 arcseconds	0.543 arcseconds			
Max Wavelength	271 nm	362 nm	690 nm	1035 nm			
Stellar Radius	$9.94 \times 10^{6} \mathrm{~m}$	$1.20 \times 10^{9} \mathrm{~m}$	$3.82 \times 10^{8} \mathrm{~m}$	$6.29 \times 10^{7} \mathrm{~m}$			

Temperature	Luminosity	Distance	Brightness

Star \#2 (designed by you ().)

Determine the luminosity of a main sequence star that is farther away from your calculated star but has the exact same brightness. The distance of this star must be based on your birthday. (for example, a birthday of August $3^{\text {rd }}$ would be written $8.03 \times 10^{18} \mathrm{~m}$). Estimate the temperature by locating its position within the main sequence of the $\mathrm{H}-\mathrm{R}$ Diagram ($\mathrm{L}_{\text {sun }}=3.828 \times 10^{26} \mathrm{~W}$).

Star 2

Star Name

| Distance $[\mathrm{m}]$ | m | m | d | d |
| :--- | :--- | :--- | :--- | :--- |$\times 10^{18} \mathrm{~m}$

Luminosity [W]
Temperature [K]

