Atomic Physics IB Physics Content Guide

Big Ideas

- Atomic nuclei decay to form more stable configurations and produce radiation in the process
- The rate of decay can be predicted for different materials and used to determine age based on isotope count
- Mass and energy are different manifestations of the same thing
- More energy efficient configurations mean that fission and fusion reactions release energy
- It is believed that all matter is made up of fundamental particles called quarks and leptons
- There is a symmetry between all matter with particles and their corresponding anti-particles
- The standard model has helped spur discoveries of new particles, but it may not yet be complete

Content Objectives

1 – Radiation and Decay

I can interpret isotope notation to determine the number of protons and neutrons		
I can describe why the nucleus of an atom stays together despite the electrostatic repulsion		
I can predict the products of alpha and beta decay		
I can describe the impact of ionizing radiation and the ionizing effect of different types of decay		
I can predict the penetration of the radiation byproducts of nuclear decay		
I can describe the deflection of the radiation byproducts moving through a magnetic or electric field		
I can predict the percentage of an isotope remaining after a given number of half-lives		
I can calculate the age of a sample when given the percentage of an isotope remaining		

2 – Energy and Mass Defects

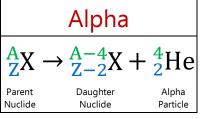
I can relate units of mass between kilograms (kg) and atomic mass units (u)		
I can use the mass/energy equivalence to mathematically relate mass and energy		
I can convert between Joules (J) and electron-volts (eV)		
I can describe how MeV c^{-2} is a valid unit for mass		
I can define mass defect and explain how it is related to energy		
I can calculate the mass defect of a nuclide		
I can calculate binding energy from mass defect		
I can interpret a chart showing binding energy per nucleon to locate stable nuclei		

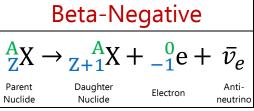
3 – Atomic Spectra

I can describe the co				
I can describe what i				
I can mathematically relate energy and frequency by Planck's constant				
I can describe the pro				
I can calculate the er				
I can use the waveler	ngth of light to determine the electron transition			

4 – Particles & the Standard Model

I can identify the general categories of particles in the standard model		
I can classify particle categories into an organized family tree with examples of each		
I can describe how quarks can be combined to create whole number charges		
I can identify the quarks required to form protons and neutrons		
I can calculate the charge of a given baryon or meson		
I can describe the phenomenon of Quark Confinement		
I can analyze a reaction based on conservation of Baryon #, Lepton #, Charge, and Strangeness		
I can describe forces in terms of exchange particles		
I can rank the fundamental forces based on strength		
I can describe the role of the Standard Model in the discovery of new particles		

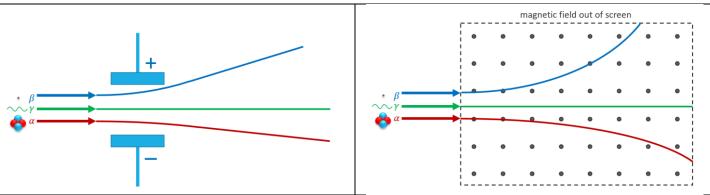

5 – Feynman Diagrams and the Higgs Boson


I can describe key features of the Large Hadron Collider and its role in the Higgs Boson discovery			
I can follow the general rules for creating a Feynman Diagram			
I can describe a particle interaction using Feynman Diagram			

Atomic Physics

Shelving Guide

Types of Decay



Beta-Positive						
AZX -	$\rightarrow \frac{A}{Z-1}X$	+ ₊₁ 0 +	$\vdash v_e$			
Parent Nuclide	Daughter Nuclide	Positron	Neutrino			

Lead

Aluminum

Property	Alpha (α)	Beta (β+ or β-)	Gamma (γ)	Pag
Relative Charge	+2	+1 or -1	0	δ α 5 cm of air
Relative Mass	4	0.0005	0	• β 30 cm of air
Typical Speed	10 ⁷ m s ⁻¹	2.5×10^{8} m s ⁻¹	3.0×10^{8} m s ⁻¹	~~γ Highly Penetrating
Ionizing Effect	Strong	Weak	Very Weak	renetrating
$\gamma \gamma $	+			γ γ α

Half Life

# of	Fraction Percentage		βr.
Half-Lives	Remaining	Remaining	ainir
0	1	1 100%	
1	1/2	50%	sotope
2	1/4	25%	arent I
3	1/8	12.5%	Percentage of Parent Isotope Remaining
4	1/16	6.25%	centaç
5	1/32	3.125%	Per
6	1/64	1.5625%	

Mass-Energy Equivalence	Variable Symbol	Unit
Energy	E	J
Mass	m	kg
Speed of Light	С	m s ⁻¹

Data Booklet Equation:

$$E=mc^2$$

$$c = 3.00 \times 10^8 \, m \, s^{-1}$$

Unified Atomic Mass Unit	и	1.661 × 10 ⁻²⁷ kg	1.000000 u	931.5 MeV c ⁻²
				-
Electron Rest Mass	$m_{ m e}$	9.110 × 10 ⁻³¹ kg	0.000549 u	0.511 MeV c ⁻²
Proton Rest Mass	$m_{ m p}$	1.673 × 10 ⁻²⁷ kg	1.007276 u	938 MeV c ⁻²
Neutron Rest Mass	$m_{ m n}$	1.675 × 10 ⁻²⁷ kg	1.008665 u	940 MeV c ⁻²

Converting between Joules and Electron-Volts

$$\{Energy \ in \ eV\} = \frac{\{Energy \ in \ J\}}{1.60 \times 10^{-19}}$$

 $\{Energy\ in\ J\} = \{Energy\ in\ eV\} \times 1.60 \times 10^{-19}$

Process for Calculating Binding Energy

- 1. Add up the "before and after" masses
- 2. Find the mass defect by taking the difference
- 3. Convert atomic mass units (u) into MeV c^{-2} by using the conversion factor 1 u = 931.5 MeV c^{-2}
- 4. The c^{-2} cancels out when converting to energy using $E = mc^2$ so this is your binding energy

Atomic Spectra

	Variable Symbol	Unit
Energy	Е	J or eV
Planck's Constant	h	J s
Frequency	f	Hz
Speed of Light	С	m s ⁻¹
Wavelength	λ	m

Data Booklet Equations:

$$E = hf$$

$$\lambda = \frac{hc}{E}$$

$$h = 6.63 \times 10^{-34} \text{ J s}$$

$$c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$$

$$hc$$
 1.99 × 10⁻²⁵ J m 1.24 × 10⁻⁶ eV m

Fundamental Particles

The following two tables are provided in the IB Physics Data Booklet

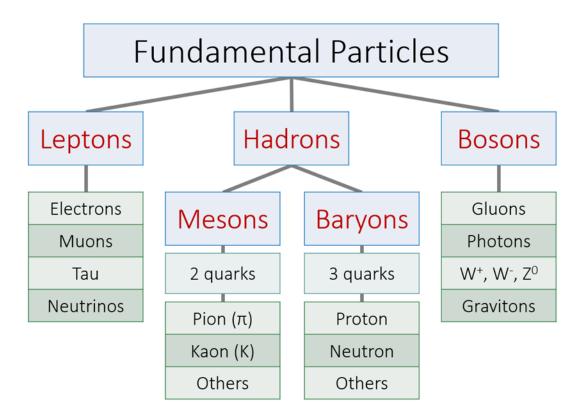
Charge		Quarks	Baryon Number	
$\frac{2}{3}$	u	С	t	$\frac{1}{3}$
$-\frac{1}{3}$	d	S	b	$\frac{1}{3}$

All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of -1

Charge	Leptons		
-1	e	μ	τ
0	v_e	v_{μ}	$v_{ au}$

All leptons have a lepton number of 1 and antileptons have a lepton number of –1

Quarks			
Symbol	Name	Charge	Baryon #
u	Up	$+\frac{2}{3}$	$\frac{1}{3}$
d	Down	$-\frac{1}{3}$	$\frac{1}{3}$
С	Charm	$+\frac{2}{3}$	$\frac{1}{3}$
S	Strange	$-\frac{1}{3}$	$\frac{1}{3}$
t	Тор	$+\frac{2}{3}$	$\frac{1}{3}$
b	Bottom	$-\frac{1}{3}$	1 3

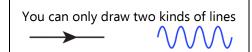

Leptons			
Symbol	Name	Charge	Lepton #
e	Electron	-1	1
μ	Muon	-1	1
τ	Tau	-1	1
v_e	Electron Neutrino	0	1
v_{μ}	Muon Neutrino	0	1
$v_{ au}$	Tau Neutrino	0	1

Anti-Quarks			
Symbol	Name	Charge	Baryon #
ū	Antiup	$-\frac{2}{3}$	$-\frac{1}{3}$
ā	Antidown	$+\frac{1}{3}$	$-\frac{1}{3}$
c	Anticharm	$-\frac{2}{3}$	$-\frac{1}{3}$
Ī	Antistrange	$+\frac{1}{3}$	$-\frac{1}{3}$
ī	Antitop	$-\frac{2}{3}$	$-\frac{1}{3}$
b	Antibottom	$+\frac{1}{3}$	$-\frac{1}{3}$

Anti-Leptons			
Symbol	Name	Charge	Lepton #
ē	Antielectron (positron)	+1	-1
$\bar{\mu}$	Antimuon	+1	-1
τ	Antitau	+1	-1
$ar{v}_e$	Electron Antineutrino	0	-1
$ar{v}_{\mu}$	Muon Antineutrino	0	-1
$ar{v}_{ au}$	Tau Antineutrino	0	-1

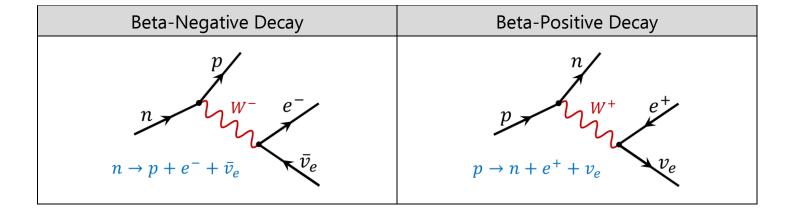
Explain the phenomenon of **Quark Confinement**:

Quarks have never been observed on their own. The amount of energy required to overcome the strong nuclear force holding the quarks together gets converted into mass and forms a new quark pair.


Fundamental Forces

	Strength	Distance
Gravitational	Weakest	Long Range
Weak	Weak	Short Range
Electromagnetic	Strong	Very Long Range
Strong	Strongest	Very Short Range

Particle Configurations


Protor	1	Neutro	on
duu		u d	d
Total Charge	+1	Total Charge	0

Feynman Diagrams

You can *only* connect these lines if you have two lines with arrows meeting a single wiggly line

The x-axis represents time and is read from left to right. Everything left of the vertex is the "before" condition.

