Atomic Physics IB Physics Content Guide

Big Ideas

- Atomic nuclei decay to form more stable configurations and produce radiation in the process
- The rate of decay can be predicted for different materials and used to determine age based on isotope count
- Mass and energy are different manifestations of the same thing
- More energy efficient configurations mean that fission and fusion reactions release energy
- It is believed that all matter is made up of fundamental particles called quarks and leptons
- There is a symmetry between all matter with particles and their corresponding anti-particles
- The standard model has helped spur discoveries of new particles, but it may not yet be complete

Content Objectives

1 – Radiation and Decay

I can interpret isotope notation to determine the number of protons and neutrons		
I can describe why the nucleus of an atom stays together despite the electrostatic repulsion		
I can predict the products of alpha and beta decay		
I can describe the impact of ionizing radiation and the ionizing effect of different types of decay		
I can predict the penetration of the radiation byproducts of nuclear decay		
I can describe the deflection of the radiation byproducts moving through a magnetic or electric field		
I can predict the percentage of an isotope remaining after a given number of half-lives		
I can calculate the age of a sample when given the percentage of an isotope remaining		

2 – Energy and Mass Defects

I can relate units of mass between kilograms (kg) and atomic mass units (u)		
I can use the mass/energy equivalence to mathematically relate mass and energy		
I can convert between Joules (J) and electron-volts (eV)		
I can describe how MeV c ⁻² is a valid unit for mass		
I can define mass defect and explain how it is related to energy		
I can calculate the mass defect of a nuclide		
I can calculate binding energy from mass defect		
I can interpret a chart showing binding energy per nucleon to locate stable nuclei		

3 – Atomic Spectra

I can describe the concept of emission and absorption spectra and their role in identifying elements		
I can describe what it means for light to be quantized		
I can mathematically relate energy and frequency by Planck's constant		
I can describe the process of electrons dropping energy levels and emitting photons		
I can calculate the energy and wavelength emitted from an electron as it transitions		
I can use the wavelength of light to determine the electron transition		

4 – Particles & the Standard Model

I can identify the general categories of particles in the standard model		
I can classify particle categories into an organized family tree with examples of each		
I can describe how quarks can be combined to create whole number charges		
I can identify the quarks required to form protons and neutrons		
I can calculate the charge of a given baryon or meson		
I can describe the phenomenon of Quark Confinement		
I can analyze a reaction based on conservation of Baryon #, Lepton #, Charge, and Strangeness		
I can describe forces in terms of exchange particles		
I can rank the fundamental forces based on strength		
I can describe the role of the Standard Model in the discovery of new particles		

5 – Feynman Diagrams and the Higgs Boson

I can describe key features of the Large Hadron Collider and its role in the Higgs Boson discovery		
I can follow the general rules for creating a Feynman Diagram		
I can describe a particle interaction using Feynman Diagram		

Atomic Physics

Shelving Guide

Types of Decay

Half Life

# of Half-Lives	Fraction Remaining	Percentage Remaining	
0	1	100%	80%
1	1/2	50%	
2			som
3			0 40%
4			%02 do
5			0% but the second secon
6			0 1 2 3 4 5 6 # of Half-Lives

Mass-Energy Equivalen	ce	Variable Symbol	Unit	Data Booklet Equatio	
Energy				Г	
Mass				$E = mc^2$	
Speed of Light				$c = 3.00 \times 10^8 m s^{-1}$	
Unified Atomic Mass Unit	u	1.661 × 10 ⁻²⁷ kc		1.000000 u	931.5 MeV c ⁻²
			, 		
Electron Rest Mass	$m_{ m e}$	9.110 × 10 ⁻³¹ kg) ⁻³¹ kg 0.000549 u 0.511 Me		0.511 MeV c ⁻²
Proton Rest Mass	$m_{ m p}$	1.673 × 10 ⁻²⁷ kg		1.007276 u	938 MeV c ⁻²
Neutron Rest Mass	m _n	1.675 × 10 ⁻²⁷ kg 1		1.008665 u	940 MeV c ⁻²

Converting between Joules and Electron-Volts

$\{Energy in eV\} = \frac{\{Energy in J\}}{1.60 \times 10^{-19}}$	$\{Energy in J\} = \{Energy in eV\} \times 1.60 \times 10^{-19}$
---	--

Process for Calculating Binding Energy

Atomic Spectra

	Variable Symbol	Unit	Data Booklet Equations:
Energy			E = hf
Planck's Constant			hc
Frequency			$\lambda = \frac{1}{E}$
Speed of Light			$h = 6.63 \times 10^{-34} \text{ J s}$
Wavelength			$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$

hc J m eV m

Fundamental Particles

The following two tables are provided in the IB Physics Data Booklet

Charge	Quarks			Baryon Number	
$\frac{2}{3}$	u	С	t	$\frac{1}{3}$	
$-\frac{1}{3}$	d	S	b	$\frac{1}{3}$	
All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of –1					

Charge	Leptons			
-1	e	μ	τ	
0	v _e	v_{μ}	$v_{ au}$	

All leptons have a lepton number of 1 and antileptons have a lepton number of -1

Charge

Lepton #

Quarks						
Symbol	Name	Charge	Baryon #			
	Up					
	Down					
	Charm					
	Strange					
	Тор					
	Bottom					

Anti-Quarks			
Symbol	Name	Charge	Baryon #
	Antiup		
	Antidown		
	Anticharm		
	Antistrange		
	Antitop		
	Antibottom		

ElectronMuonTauTauElectron
NeutrinoMuon
NeutrinoMuon
NeutrinoTau NeutrinoTau NeutrinoTau NeutrinoAnti-LeptonsSymbolNameChargeLepton #

Leptons

Name

Symbol

Anti-Leptons			
Symbol	Name	Charge	Lepton #
	Antielectron (positron)		
	Antimuon		
	Antitau		
	Electron Antineutrino		
	Muon Antineutrino		
	Tau Antineutrino		

Explain the phenomenon of **Quark Confinement**:

Fundamental Forces

	Strength	Distance
Gravitational		
Weak		
Electromagnetic		
Strong		

Feynman Diagrams

You can only draw two kinds of lines	You can <i>only</i> connect these lines if	The x-axis represents time and is read
\rightarrow $\land \land \land \land \land$	you have two lines with arrows	from left to right. Everything left of
	meeting a single wiggly line	the vertex is the "before" condition.

Beta-Negative Decay	Beta-Positive Decay	

Particle Configurations

Proton		Neutro	on
Total Charge		Total Charge	