Centripetal Force and Acceleration

IB PHYSICS | CIRCULAR MOTION

Remember Newton's $1^{\text {st }}$?

A body will remain at rest or moving with constant velocity unless acted upon by an unbalanced force
"Law of Inertia"

Remember back...

There are 3 ways that an object can be experiencing acceleration?

Speeding Up Slowing Down

Changing
Direction

Centripetal Acceleration

Centripetal acceleration represents the rate of change of velocity and its direction

$$
a=\frac{v^{2}}{r}
$$

Centripetal Acceleration

Centripetal acceleration can be seen when finding the change between velocity vectors

Centripetal acceleration will always point to the center

Calculating Centripetal Acceleration

$$
\begin{gathered}
a=\frac{v^{2}}{r} \quad v=\omega r \\
a=\frac{\left(\frac{2 \pi r}{T^{2}}\right)^{2}}{r}=\frac{\frac{4 \pi^{2} r^{2}}{T^{2}}}{r}=\frac{4 \pi^{2} r^{2}}{T^{2}}=\frac{2 \pi}{T} \quad v=\frac{2 \pi r}{T} \\
\boldsymbol{T}^{2} \boldsymbol{r}
\end{gathered}
$$

IB Physics Data Booklet

$$
\begin{aligned}
& \text { Sub-topic } 6.1 \text { - Circular motion } \\
& \begin{array}{l}
v=\omega r \\
a=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}} \\
F=\frac{m v^{2}}{r}=m \omega^{2} r
\end{array}
\end{aligned}
$$

Try this....

If the carousel spins at 1 complete rotation every 10 seconds, what is the centripetal acceleration for each row?

A

$$
\begin{aligned}
& \omega=0.63 \mathrm{rad} \mathrm{~s}^{-1} \mid \mathrm{v}=1.3 \mathrm{~m} \mathrm{~s}^{-1} \\
& a=\frac{1.3^{2}}{2}=0.843 \mathrm{~m} \mathrm{~s}^{-2} \\
& \omega=0.63 \mathrm{rad} \mathrm{~s}^{-1} \mid \mathrm{V}=1.9 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

B

$$
a=\frac{1.9^{2}}{3}=1.20 \mathrm{~m} \mathrm{~s}^{-2}
$$

Wait... Where's the Force?

We know from Newton's $2^{\text {nd }}$ Law that every time that we have acceleration, there must be a force causing that change in velocity

Calculating Centripetal Force

$$
\begin{gathered}
F=\frac{m v^{2}}{r} \quad v=\omega r \\
F=\frac{m(\omega r)^{2}}{r}=\boldsymbol{m} \omega^{2} \boldsymbol{r}
\end{gathered}
$$

IB Physics Data Booklet

Sub-topic 6.1 - Circular motion

$$
\begin{aligned}
& v=\omega r \\
& a=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}} \\
& F=\frac{m v^{2}}{r}=m \omega^{2} r
\end{aligned}
$$

Try This...

A 3 kg rock swings in a circle of radius 5 m . If its constant speed is $8 \mathrm{~m} \mathrm{~s}^{-1}$, what is the centripetal acceleration and force?

$$
\begin{array}{ll}
\mathrm{m}=3 \mathrm{~kg} \quad r=5 \mathrm{~m} \quad \mathrm{~V}=8 \mathrm{~m} \mathrm{~s}^{-1} \\
a=\frac{v^{2}}{r}=\frac{8^{2}}{5}=12.8 \mathrm{~m} \mathrm{~s}^{-2} & \begin{array}{l}
v=\omega r \\
a=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}} \\
F=\frac{m v^{2}}{r}=m \omega^{2} r
\end{array} \\
F=m a=(3)(12.8)=38.4 \mathrm{~N}
\end{array}
$$

Try This...

A pilot is flying a small plane at $30.0 \mathrm{~m} \mathrm{~s}^{-1}$ with a radius of 100.0 m . If a force of 635 N is needed to maintain the pilot's circular motion, what is the pilot's mass?

v	$30 \mathrm{~m} \mathrm{~s}^{-1}$
r	100 m
F	635 N
m	$?$

$$
\begin{aligned}
& v=\omega r \\
& a=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}} \\
& F=\frac{m v^{2}}{r}=m \omega^{2} r
\end{aligned}
$$

Equation Summary

Sub-topic 6.1 - Circular motion
$v=\omega r$
$a=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}}$
$F=\frac{m v^{2}}{r}=m \omega^{2} r$

Velocity

Linear
$v \rightarrow \mathrm{~m} \mathrm{~s}^{-1}$

Angular
$\omega \rightarrow \operatorname{rad~s}^{-1}$

Centripetal Acceleration changes direction toward center

Centripetal Force directed toward center
$F=m a$
See derived equations

Lesson Takeaways

\square I can determine the direction and magnitude of centripetal acceleration and centripetal force
\square I can identify circular motion properties in a description and choose an appropriate equation to relate them

