Vertical Circular Motion with Tension

IB PHYSICS | CIRCULAR MOTION

IB Physics Data Booklet

Sub-topic 6.1 - Circular motion

$$
\begin{array}{ll}
v=\omega r & v-\text { linear velocity }\left(\mathrm{m} \mathrm{~s}^{-1}\right) \\
a=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}} & \begin{array}{l}
\omega-\operatorname{angular} \text { velocity }\left(\mathrm{rad} \mathrm{~s}^{-1}\right) \\
r-\operatorname{radius}(\mathrm{m}) \\
F=\frac{m v^{2}}{r}=m \omega^{2} r
\end{array} \begin{array}{l}
T-\operatorname{period}(\mathrm{s}) \\
a-\operatorname{centripetal} \text { acceleration }\left(\mathrm{m} \mathrm{~s}^{-2}\right) \\
\\
F-\text { centripetal force }(\mathrm{N})
\end{array}
\end{array}
$$

Try This...

Top View

If you swing a ball on a string above your head, and the string breaks, what happens?

Travels in a straight line tangent to the circle

An inward facing force is required for circular motion

Think about it...

If you swing a ball on a string in a vertical circle, where is the string most likely to break? Why?

Because gravity is pulling against the string at this point

Centripetal Force

Remember, for an object to follow a curved path, there must be an inward pointing centripetal force $\left(F_{c}\right)$

This is not really a force that shows up on a free body diagram like F_{g}, R, F_{f}, and F_{T}.

Rather, it is more like the net force that is required to create that circular motion

If an object is in circular motion:

$$
F_{\mathrm{net}}=F_{\mathrm{c}}
$$

Vertical Circle

When you make a vertical circle the net force at all points must equal the centripetal force $\left(F_{c}\right)$

> This is the case for horizontal circles too! The main difference is that now the weight is a factor...

Again, this isn't some magical new force but rather a combination of all forces resulting in...

$$
F_{\text {net }}=F_{c}
$$

Let's focus on the top and bottom...

At the Top:

At the Bottom:

Now with numbers!

F_{c} required is $20 \mathrm{~N} \quad$ At the Top:
F_{g} of object is 5 N
${ }^{*} \mathrm{~F}_{\mathrm{T}}$ is determined by comparing the known forces (F_{g}) to the net force (F_{c}) and finding the difference

What is the tension?

Top	Botto	Top		Bot	
		m	2 kg	m	2 kg
	∇_{58}	v_{t}	$5 \mathrm{~m} / \mathrm{s}$	v_{t}	$5 \mathrm{~m} / \mathrm{s}$
		r	0.5 m	r	0.5 m
	$v^{2}=\underline{(2)(5)}{ }^{2}$	F_{c}	100 N	F_{c}	100 N
	$\begin{aligned} & \boldsymbol{F}_{F_{C}}=\mathbf{0 . 5} \\ & \mathbf{1 0 0} \end{aligned}$	F_{n}	100 N	$F_{\text {net }}$	100 N
		F_{g}	19.62 N	F_{8}	19.62 N
,	$\mathrm{F}_{g}=m g$ 19	F_{T}	80.38 N	F	119.62 N

What is the tension?

What is the angular velocity in rad s^{-1} at the bottom of a vertical circle created when a $0.2-\mathrm{kg}$ phone charger is swung with a 0.8 m cord and a tension of 6 N at the lowest point?

$$
\begin{gathered}
F_{C}=m \omega^{2} r \\
F_{C}=\frac{m v^{2}}{r}=m \omega^{2} r \quad \begin{array}{r}
4.04=(0.2) \omega^{2}(0.8) \\
\omega^{2}=25.25
\end{array} \\
\omega=\mathbf{5 . 0 2 \mathbf { r a d ~ s } ^ { - 1 }} \\
F_{\mathrm{c}}=6-1.96=4.04 \mathrm{~N}
\end{gathered}
$$

Lesson Takeaways

\square I can compare the forces on an object at different positions in vertical circular motion
\square I can determine the magnitude and direction of the forces needed for the overall centripetal force
\square I can qualitatively describe how tension changes in a vertical circle

