Vertical Circular Motion with Tension

IB PHYSICS | CIRCULAR MOTION

IB Physics Data Booklet

Sub-topic 6.1 – Circular motion

 $v = \omega r$

- v linear velocity (m s⁻¹)
- ω angular velocity (rad s⁻¹)
- r radius (m)
- T period (s)
- a centripetal acceleration (m s⁻²)
- F centripetal force (N)

Try This...

If you swing a ball on a string above your head, and the string breaks, what happens?

Travels in a straight line tangent to the circle

An inward facing force is required for circular motion

Think about it...

Centripetal Force

Remember, for an object to follow a curved path, there must be an inward pointing centripetal force (F_c)

This is not really a force that shows up on a free body diagram like F_g , R, F_f , and F_T .

Rather, it is more like the net force that is required to create that circular motion

If an object is in circular motion:

 $F_{net} = F_c$

Vertical Circle

When you make a vertical circle the net force at all points must equal the centripetal force (F_c)

This is the case for horizontal circles too! The main difference is that now the weight is a factor...

Again, this isn't some magical new force but rather a combination of all forces resulting in...

Let's focus on the top and bottom...

At the Top:

Now with numbers!

What is the tension?

What is the tension?

What is the angular velocity in rad s⁻¹ at the bottom of a vertical circle created when a 0.2-kg phone charger is swung with a 0.8 m cord and a tension of 6 N at the lowest point?

Lesson Takeaways

- □ I can compare the forces on an object at different positions in vertical circular motion
- □ I can determine the magnitude and direction of the forces needed for the overall centripetal force
- I can qualitatively describe how tension changes in a vertical circle