Vertical Circular Motion with Tension

IB PHYSICS | CIRCULAR MOTION

IB Physics Data Booklet

Sub-topic 6.1 – Circular motion

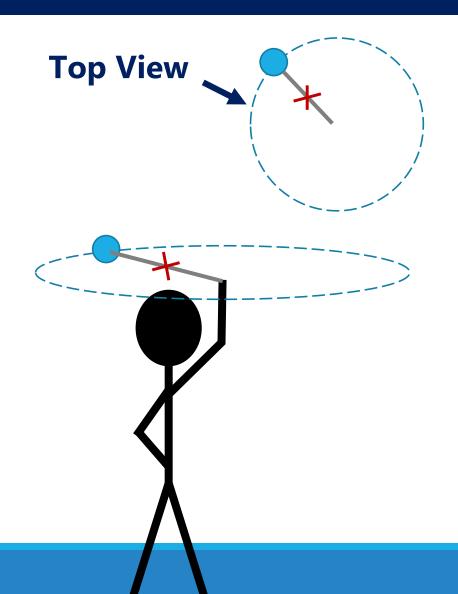
$$v = \omega r$$

$$a = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$$

$$F = \frac{mv^2}{r} = m\omega^2 r$$

v – linear velocity (m s⁻¹)

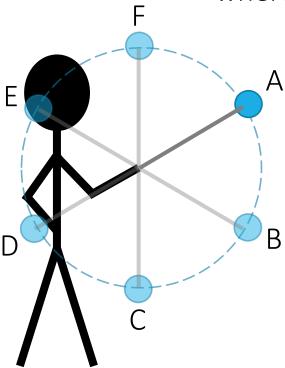
 ω – angular velocity (rad s⁻¹)


r – radius (m)

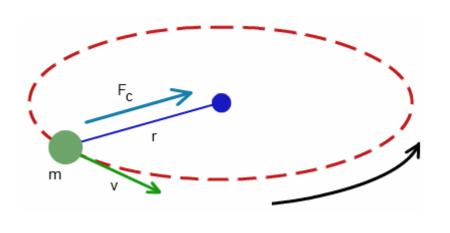
T – period (s)

a – centripetal acceleration (m s⁻²)

F – centripetal force (N)


Try This...

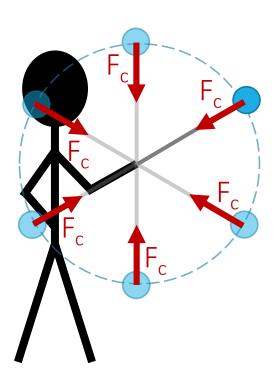
If you swing a ball on a string above your head, and the string breaks, what happens?


Think about it...

If you swing a ball on a string in a vertical circle, where is the string most likely to break? Why?

Centripetal Force

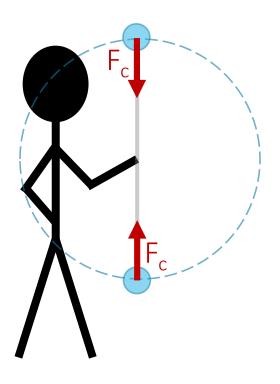
Remember, for an object to follow a curved path, there must be an inward pointing centripetal force (F_c)


This is not really a force that shows up on a free body diagram like F_g , R, F_f , and F_T .

Rather, it is more like the net force that is required to create that circular motion

If an object is in circular motion:

Vertical Circle


When you make a vertical circle the net force at all points must equal the centripetal force (F_c)

This is the case for horizontal circles too! The main difference is that now the weight is a factor...

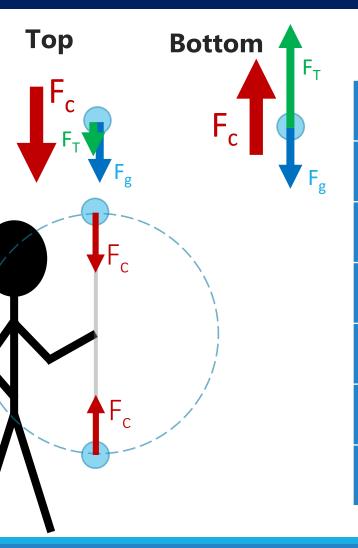
Let's focus on the top and bottom...

At the Top:

At the Bottom:

Now with numbers!

 F_c required is 20 N F_g of object is 5 N


20 N

At the Top:

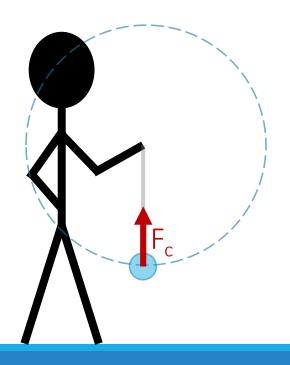
* F_T is determined by comparing the known forces (F_g) to the net force (F_c) and finding the difference

At the Bottom:

What is the tension?

Top

m	2 kg
V _t	5 m/s
r	0.5 m
F _c	
F _{net}	
Fg	
F_T	


Bottom

m	2 kg
V _t	5 m/s
r	0.5 m
F_c	
F _{net}	
F_g	
F_T	

What is the tension?

What is the angular velocity in rad s^{-1} at the bottom of a vertical circle created when a 0.2-kg phone charger is swung with a 0.8 m cord and a tension of 6 N at the lowest point?

$$F_c = m\omega^2 r$$

$$F_c = \frac{mv^2}{r} = m\omega^2 r$$

Lesson Takeaways

- ☐ I can compare the forces on an object at different positions in vertical circular motion
- ☐ I can determine the magnitude and direction of the forces needed for the overall centripetal force
- ☐ I can qualitatively describe how tension changes in a vertical circle