Vertical Circular Motion with a Surface

IB PHYSICS | CIRCULAR MOTION

IB Physics Data Booklet

Sub-topic 6.1 – Circular motion

$$v = \omega r$$

$$a = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$$

$$F = \frac{mv^2}{r} = m\omega^2 r$$

v – linear velocity (m s⁻¹)

 ω – angular velocity (rad s⁻¹)

r – radius (m)

T – period (s)

a – centripetal acceleration (m s⁻²)

F – centripetal force (N)

Remember Normal Reaction Force?

*Always perpendicular to the surface applying the force

Roller Coaster | Bottom

m	200 kg
V	10 m s ⁻¹
r	8 m
F _c	2500 N
F _{net}	2500 N
F _g	1962 N
R	4462 N

Roller Coaster | Top

m	200 kg
V _t	5 m s ⁻¹
r	8 m
F _c	625 N
F _{net}	625 N
F _g	1962 N
R	1337 N

Perceived Weight

The normal reaction force represents a rider's "perceived weight"

 $R < F_q \mid "Weightless"$

The ultimate "weightless" experience

Loop the Loop!

The velocity needs to be fast enough that the R is greater than 0 N

Minimum velocity required =
$$\sqrt{gr}$$

Lesson Takeaways

- ☐ I can compare the forces on an object at different positions in vertical circular motion
- ☐ I can determine the magnitude and direction of the forces needed for the overall centripetal force
- ☐ I can qualitatively describe how normal reaction force changes in a vertical circle
- ☐ I can describe the experience of "weightlessness" in terms of normal reaction force