Vertical Circular Motion with a Surface

IB PHYSICS | CIRCULAR MOTION

IB Physics Data Booklet

Sub-topic 6.1 - Circular motion

$$
\begin{array}{ll}
v=\omega r & v-\text { linear velocity }\left(\mathrm{m} \mathrm{~s}^{-1}\right) \\
a=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}} & \begin{array}{l}
\omega-\operatorname{angular} \text { velocity }\left(\mathrm{rad} \mathrm{~s}^{-1}\right) \\
r-\operatorname{radius}(\mathrm{m}) \\
F=\frac{m v^{2}}{r}=m \omega^{2} r
\end{array} \begin{array}{l}
T-\operatorname{period}(\mathrm{s}) \\
a-\operatorname{centripetal} \text { acceleration }\left(\mathrm{m} \mathrm{~s}^{-2}\right) \\
\\
F-\text { centripetal force }(\mathrm{N})
\end{array}
\end{array}
$$

Remember Normal Reaction Force?

*Always perpendicular to the surface applying the force

Roller Coaster | Bottom

m	200 kg
v	$10 \mathrm{~m} \mathrm{~s}^{-1}$
r	8 m
F_{c}	2500 N
$F_{\text {net }}$	2500 N
F_{g}	1962 N
R	4462 N

Roller Coaster | Top

m	200 kg
v_{t}	$5 \mathrm{~m} \mathrm{~s}^{-1}$
r	8 m
F_{c}	625 N
$F_{\text {net }}$	625 N
F_{g}	1962 N
R	1337 N

Perceived Weight

The normal reaction force represents a rider's "perceived weight"
$R>F_{g} \mid$ "Squished into seat"
$R<F_{g} \mid$ "Weightless"

The ultimate "weightless" experience

Loop the Loop!

The velocity needs to be fast enough that the R is greater than ON

Minimum velocity required $=\sqrt{g r}$

Lesson Takeaways

\square I can compare the forces on an object at different positions in vertical circular motion
I can determine the magnitude and direction of the forces needed for the overall centripetal force
\square I can qualitatively describe how normal reaction force changes in a vertical circle
\square I can describe the experience of "weightlessness" in terms of normal reaction force

