Circular Motion Scenarios The Pendulum

IB PHYSICS | CIRCULAR MOTION

IB Physics Data Booklet

Sub-topic 6.1 - Circular motion

$$
\begin{array}{ll}
v=\omega r & v-\text { linear velocity }\left(\mathrm{m} \mathrm{~s}^{-1}\right) \\
a=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}} & \begin{array}{l}
\omega-\operatorname{angular} \text { velocity }\left(\mathrm{rad} \mathrm{~s}^{-1}\right) \\
r-\operatorname{radius}(\mathrm{m}) \\
F=\frac{m v^{2}}{r}=m \omega^{2} r
\end{array} \begin{array}{l}
T-\operatorname{period}(\mathrm{s}) \\
a-\operatorname{centripetal} \text { acceleration }\left(\mathrm{m} \mathrm{~s}^{-2}\right) \\
\\
F-\text { centripetal force }(\mathrm{N})
\end{array}
\end{array}
$$

Pendulum Circle

Pendulum Circle

Pendulum Circle

CAUTION! There are two triangles

All Together Now!

$$
\begin{array}{lll}
F_{f}=F_{g} & R=F_{g} & T_{y}=F_{g} \\
F_{c}=R & F_{c}=F_{f} & F_{c}=T_{x}
\end{array}
$$

Lesson Takeaways

\square I can draw a free body diagram and solve a problem when circular motion is produced by components of an angled tension force.

