Circular Motion Scenarios The Pendulum

IB PHYSICS | CIRCULAR MOTION

IB Physics Data Booklet

Sub-topic 6.1 – Circular motion

 $v = \omega r$

- v linear velocity (m s⁻¹)
- ω angular velocity (rad s⁻¹)
- r radius (m)
- T period (s)
- a centripetal acceleration (m s⁻²)
- F centripetal force (N)

Pendulum Circle

Pendulum Circle

Pendulum Circle

What is centripetal force required to cause a 0.12 kg mass to swing in a horizontal circle with the string at an angle of 30°?

CAUTION! There are **two** triangles

All Together Now!

Lesson Takeaways

I can draw a free body diagram and solve a problem when circular motion is produced by <u>components of an</u> <u>angled tension force</u>.