Circular Motion IB Physics Content Guide

Big Ideas

- Objects moving in a circle are experiencing acceleration since the direction of the velocity is constantly changing
- Centripetal acceleration and centripetal force are always directed toward the center of the circle
- The net force for a body in circular motion is equal to the centripetal force
- It is useful to draw a free body diagram to determine what forces are present at a given position •

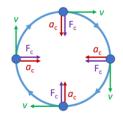
Content Objectives

1 – Defining Circular Motion

I can convert between angular displacement in revolutions and radians		
I can describe and calculate the properties of period and frequency		
I can calculate angular velocity		
I can describe and calculate tangential velocity based on the angular velocity and radius		
I can determine the direction and magnitude of centripetal acceleration and centripetal force		

2 – Vertical Circular Motion

I can draw correctly proportioned free body diagrams for horizontal and vertical circular motion		
I can compare the forces on an object at different positions in vertical circular motion		
I can identify the combination of forces that make up the net force that results in circular motion.		
I can determine the magnitude and direction of the forces needed to move in a vertical circle		


3 – Circular Motion, Friction, and Angles

I can draw a free body diagram when circular motion is produced by a reaction or friction force			
I can solve problems that involve friction to create circular motion			
I can solve circular motion problems that incorporate components of an angled force			

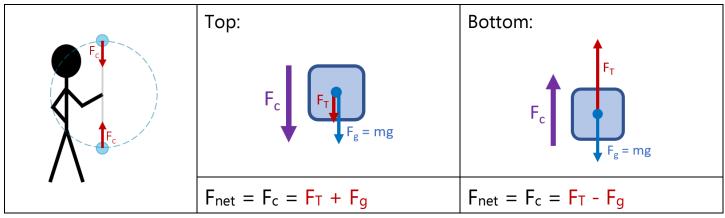
Circular Motion

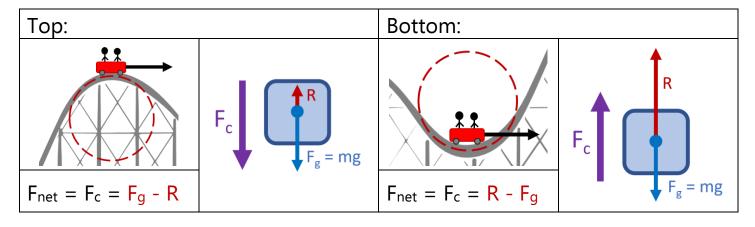
	Variable Symbol	Unit
Distance	d	m
Angular Distance	θ	rad
Angular Velocity	ω	rad s⁻¹
Linear Velocity	V	m s⁻¹
Centripetal Acceleration	а	m s⁻²
Centripetal Force	Fc	Ν

Shelving Guide

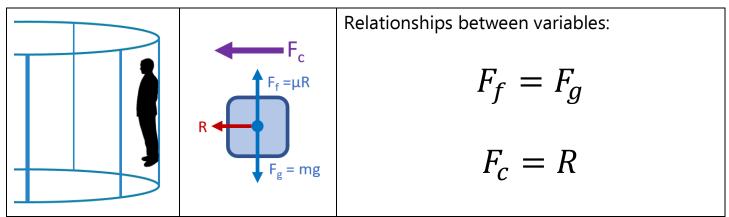
Data Booklet Equations:

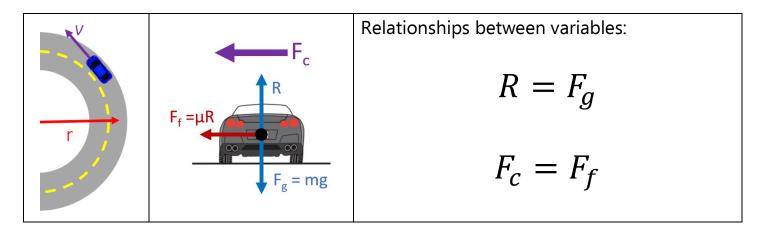
$$v = \omega r$$


$$a = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$$


$$F = \frac{mv^2}{r} = m\omega^2 r$$

Defining Circular Motion


	Period	Т	S	Angular Velocity	ω	rad s ⁻¹
2π rad	Time per revolution			$\omega = \frac{2\pi}{T}$		


Vertical Circular Motion



Circular Motion with Friction and Angles

