Circular Motion

IB Physics Content Guide

Big Ideas

- Objects moving in a circle are experiencing acceleration since the direction of the velocity is constantly changing
- Centripetal acceleration and centripetal force are always directed toward the center of the circle
- The net force for a body in circular motion is equal to the centripetal force
- It is useful to draw a free body diagram to determine what forces are present at a given position

Content Objectives

1 - Defining Circular Motion

I can convert between angular displacement in revolutions and radians		
I can describe and calculate the properties of period and frequency		
I can calculate angular velocity		
I can describe and calculate tangential velocity based on the angular velocity and radius		
I can determine the direction and magnitude of centripetal acceleration and centripetal force		

2 - Vertical Circular Motion

I can draw correctly proportioned free body diagrams for horizontal and vertical circular motion		
I can compare the forces on an object at different positions in vertical circular motion		
I can identify the combination of forces that make up the net force that results in circular motion.		
I can determine the magnitude and direction of the forces needed to move in a vertical circle		

3 - Circular Motion, Friction, and Angles

I can draw a free body diagram when circular motion is produced by a reaction or friction force		
I can solve problems that involve friction to create circular motion		
I can solve circular motion problems that incorporate components of an angled force		

Circular Motion

	Variable Symbol	Unit
Distance	d	m
Angular Distance	θ	rad
Angular Velocity	ω	$\mathrm{rad} \mathrm{s}^{-1}$
Linear Velocity	V	$\mathrm{m} \mathrm{s}^{-1}$
Centripetal Acceleration	a	$\mathrm{~m} \mathrm{~s}^{-2}$
Centripetal Force	F_{c}	N

Shelving Guide
Draw in
vectors
for $v_{,} a_{c}$
and $F_{c} \rightarrow$

Data Booklet Equations:

$$
v=\omega r
$$

$$
a=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}}
$$

$$
F=\frac{m v^{2}}{r}=m \omega^{2} r
$$

Defining Circular Motion

$\underbrace{}_{2 \pi \mathrm{rad}}$	Period	T	s	Angular Velocity	ω	$\mathrm{rad} \mathrm{s}^{-1}$
	Time per revolution		$\omega=\frac{2 \pi}{T}$			

Vertical Circular Motion

| | Bottom: |
| :--- | :--- | :--- |
| $F_{\text {net }}=F_{C}=F_{T}+F_{g}$ | $F_{\text {net }}=F_{C}=F_{T}-F_{g}$ |

Top: \quad Bottom:

Circular Motion with Friction and Angles

Relationships between variables:

$$
\begin{aligned}
F_{f} & =F_{g} \\
F_{c} & =R
\end{aligned}
$$

- ${ }^{2}$		Relationships between variables:
		$R=F_{g}$
	$\underset{F_{\mathrm{g}}=\mathrm{mg}}{\square}$	$F_{C}=F_{f}$

Relationships between variables:

$$
\begin{aligned}
T_{y} & =F_{g} \\
F_{c} & =T_{x}
\end{aligned}
$$

