Electrical Properties

IB PHYSICS | ELECTRICITY

Remember back...

What is potential energy?

Stored Energy

Voltage

Voltage is the Potential Energy Difference between two locations voltage $=$ Potential Difference p.d.

Symbol: V Unit: Volts [V]

Voltage

Current

The rate at which charges move through a conductor

Flow of Electrons

Symbol: I Unit: Amperes [A]

Current

Why do the electrons flow instead of protons or neutrons?

Outside of the atom
so they are more easily transferred

Voltage
Current

Resistance

How difficult it is for electrons to flow

Symbol: R Unit: Ohms [Ω]

Which one has more resistance for water flow?
Voltage
Current
Resistance

Conductors and Insulators

Conductors have a Insulators have a _ high
low
high resistance

Electrical Properties

| Property | What is it? | Symbol | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Voltage | Potential Difference | V | Volts
 $[\mathrm{V}]$ |
| Current | The rate at which the charges
 move through wire | I | Amps
 $[\mathrm{A}]$ |
| Resistance | How hard it is for current to
 flow through a conductor | R | Ohms
 $[\Omega]$ |

Voltage
Current
Resistance

How are they Related?

(4) Voltage
(4) Current
$V \propto I$

(4) Resistance
(t) Current
$R \propto 1 / I$

Voltage
Current
Resistance
Power

How are they Related?

Ohm's Law

Mathematical relationship between the electrical properties

$$
V=I \times R
$$

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} & I=\frac{\Delta q}{\Delta t} \\ & F=k \frac{q_{1} q_{2}}{r^{2}} \\ & k=\frac{1}{4 \pi \varepsilon_{0}} \\ & V=\frac{W}{q} \\ & E=\frac{F}{q} \\ & I=n A v q \end{aligned}$	Kirchhoff's circuit laws: $\begin{aligned} & \Sigma V=0 \text { (loop) } \\ & \Sigma I=0 \text { (junction) } \\ & \hline R=\frac{V}{I} \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \\ & R_{\text {total }}=R_{1}+R_{2}+\cdots \\ & \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ & \rho=\frac{R A}{L} \end{aligned}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$

Try this...

$\frac{V}{I}$

What is the voltage of a battery that produces a current of 1.5 amps through a 3 ohm resistor?

$$
\begin{aligned}
& I=1.5 \mathrm{~A} \\
& R=3 \Omega \\
& V=? ?
\end{aligned}
$$

(.) What resistance would produce a current of 5 amps from a 120 -volt power source?

$$
\begin{aligned}
& I=5 \mathrm{~A} \\
& V=120 \mathrm{~V}
\end{aligned}
$$

$$
R=\frac{V}{I}=\frac{120}{5}=24 \Omega
$$

Remember Power?

symbol: P Unit: Watts [W]

New Equations:

$$
V=I R
$$

$$
I=\frac{V}{R}
$$

$$
P=V I
$$

$$
P=\frac{V^{2}}{R}
$$

Voltage
Current
Resistance
Power

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} & I=\frac{\Delta q}{\Delta t} \\ & F=k \frac{q_{1} q_{2}}{r^{2}} \\ & k=\frac{1}{4 \pi \varepsilon_{0}} \\ & V=\frac{W}{q} \\ & E=\frac{F}{q} \\ & I=n A v q \end{aligned}$	Kirchhoff's circuit laws: $\begin{aligned} & \Sigma V=0 \text { (loop) } \\ & \Sigma I=0 \text { (junction) } \\ & R=\frac{V}{I} \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \\ & R_{\text {total }}=R_{1}+R_{2}+\cdots \\ & \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ & \rho=\frac{R A}{L} \end{aligned}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$

Calculating Power

A blender runs on 5 amps of current on a 120 V . How much power is it drawing?

$$
\begin{array}{rl}
I=5 \mathrm{~A} \\
V=120 \mathrm{~V} & P=V I \\
& =(120)(5) \\
& =\mathbf{6 0 0} \mathbf{W}
\end{array}
$$

Different Devices... Different Power

Common Appliances Estimated Watts

Blender	$300-1000$
Microwave	$1000-2000$
Waffle Iron	$800-1500$
Toaster	$800-1500$
Hair Dryer	$1000-1875$
TV 32" LED/LCD	50
TV 42" Plasma	240
Blu-Ray or DVD Player Video Game Console (Xbox / PS4 / Wii)	15

What do

 you notice?
Heat

Lesson Takeaways

\square I can describe the properties of Voltage, Current, Resistance, and Power
\square I can use Ohm's Law to mathematically relate these electrical properties and solve for an unknown

