Electrical Properties

IB PHYSICS | ELECTRICITY

Voltage

Current

Remember back...

What is potential energy?

Current

Voltage

Voltage is the Potential Energy _____ between two locations

Voltage

Current

Current

The rate at which charges move through a conductor

Symbol:

Voltage

Current

Resistance

Power

Current

Why do the electrons flow instead of protons or neutrons?

Voltage

Current

Resistance

How difficult it is for electrons to flow

Which one has more resistance for water flow?

Current

Conductors and Insulators

Current

Electrical Properties

Property	What is it?	Symbol	Unit
Voltage	Potential Difference		
Current	The rate at which the charges move through wire		
Resistance	How hard it is for current to flow through a conductor		

Voltage

Current

How are they Related?

Voltage

Current

How are they Related?

Voltage

Current

Voltage

Current

Resistance

Power

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta r}$	Kirchhoff's circuit laws:
Δt $q_1 q_2$	$\Sigma V = 0$ (loop)
$F = k \frac{\pi r^2}{r^2}$	$\Sigma I = 0$ (junction)
$k = \frac{1}{4\pi\varepsilon_0}$	$R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2 R = \frac{V^2}{R}$
$F = \frac{F}{F}$	$R_{\rm total} = R_1 + R_2 + \cdots$
$L = \frac{1}{q}$	$\frac{1}{n} = \frac{1}{n} + \frac{1}{n} + \cdots$
I = nAvq	$K_{\text{total}} = K_1 = K_2$
	$\rho = \frac{RA}{L}$
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$

Voltage

Current

Try this...

What is the voltage of a battery that produces a current of 1.5 amps through a 3 ohm resistor?

What resistance would produce a current of 5 amps from a 120-volt power source?

Current

Remember Power?

Symbol:	Unit:
---------	-------

New Equations:

Current

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta q}$	Kirchhoff's circuit laws:
Δt	$\Sigma V = 0$ (loop)
$F = k \frac{q_1 q_2}{r^2}$	$\Sigma I = 0$ (junction)
$k = \frac{1}{4\pi\varepsilon_0}$	$R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2 R = \frac{V^2}{R}$
F = F	$R_{\rm total} = R_1 + R_2 + \cdots$
$E = \frac{1}{q}$	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \cdots$
I = nAvq	$R_{\rm total}$ R_1 R_2
	$\rho = \frac{RA}{L}$
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$

Voltage

Current

Resistance

Power

Calculating Power

A blender runs on 5 amps of current on a 120 V. How much power is it drawing?

$$P = VI = I^2 R = \frac{V^2}{R}$$

Voltage

Current

Different Devices... Different Power

Common Appliances	Estimated Watts
Blender	300-1000
Microwave	1000-2000
Waffle Iron	800-1500
Toaster	800-1500
Hair Dryer	1000-1875
TV 32" LED/LCD	50
TV 42" Plasma	240
Blu-Ray or DVD Player	15
Video Game Console (Xbox / PS4 / Wii)	40-140

What do you notice?

Voltage

Current

Lesson Takeaways

- □ I can describe the properties of Voltage, Current, Resistance, and Power
- □ I can use Ohm's Law to mathematically relate these electrical properties and solve for an unknown

Current

