Circuits

IB PHYSICS | ELECTRICITY

Circuits

Resistance in a Circuit

There are many different components that act as resistors when placed in a circuit

Resistance and Electron Flow

Electrons will follow the path of least resistance

short circuit

Combining Components

Connecting in Series

- Components in one single pathway
- Current flows the same through everything

Connecting in Parallel

- Separate branches
- Current splits up between the different pathways

Connecting in Parallel

Which resistor has less resistance?

Water Flow Model

Measuring Circuits

When we measure **voltage** or **current** in a circuit, we need to connect our instrumentation in the right way

Ammeter

Hooked up in <u>Series</u> with the component being measured

To measure the current, the current must flow through the ammeter

Measuring Current

Measuring Current

Voltmeter

Hooked up in **parallel** with the component being measured

Measuring Voltage

Measuring Voltage

Lesson Takeaways

- □ I can describe the direction of conventional current compared to the movement of charges through a circuit
- I can identify component combinations as parallel or series
- I can describe how current flows through parallel and series resistors
- I can describe the set up to measure current and voltage in a circuit