## Resistivity

IB PHYSICS | ELECTRICITY

## Resistance

## What factors affect the resistance of a wire?

$$
\mathrm{R}=\frac{\rho \mathrm{L}}{\mathrm{~A}}
$$



## Resistance

Imagine that you are testing the resistance of a straw while drinking a milkshake...


## Calculating Resistance

$$
R=\rho \frac{L}{A}
$$

$$
\begin{aligned}
& \mathrm{R} \rightarrow \\
& \mathrm{~L} \rightarrow \\
& \mathrm{~A} \rightarrow \\
& \rho \rightarrow
\end{aligned}
$$

## IB Physics Data Booklet

| Sub-topic 5.1 - Electric fields | Sub-topic 5.2 - Heating effect of electric currents |
| :---: | :---: |
| $\begin{aligned} & I=\frac{\Delta q}{\Delta t} \\ & F=k \frac{q_{1} q_{2}}{r^{2}} \\ & k=\frac{1}{4 \pi \varepsilon_{0}} \\ & V=\frac{W}{q} \\ & E=\frac{F}{q} \quad R=\rho \frac{L}{A} \\ & I=n A v q \end{aligned}$ | Kirchhoff's circuit laws: $\begin{gathered} \Sigma V=0 \text { (loop) } \\ \Sigma I=0 \text { (junction) } \\ R=\frac{V}{I} \\ P=V I=I^{2} R=\frac{V^{2}}{R} \\ R_{\text {total }}=R_{1}+R_{2}+\cdots \\ \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ \rho=\frac{R A}{L} \end{gathered}$ |
| Sub-topic 5.3 - Electric cells | Sub-topic 5.4 - Magnetic effects of electric currents |
| $\varepsilon=I(R+r)$ | $\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$ |

## Resistivity

## Resistivity $\rho$ changes depending on the material used.

| Conductor Material | Resistivity <br> (Ohm meters @ 20${ }^{\circ} \mathbf{C}$ ) |
| :---: | :---: |$|$

## Resistivity - Try This \#1

| Conductor Material | Resistivity <br> (Ohm meters @ 20 |
| :---: | :---: |
| ${ }^{\circ} \mathrm{C}$ ) |  |$|$| Silver | $1.64 \times 10^{-8}$ |
| :---: | :---: |
| Copper | $2.72 \times 10^{-8}$ |
| Aluminum | $5.50 \times 10^{-8}$ |
| Tungsten | $7.80 \times 10^{-8}$ |
| Nickel | $12.0 \times 10^{-8}$ |
| Iron | $49.0 \times 10^{-8}$ |
| Constantan | $110 \times 10^{-8}$ |
| Nichrome II |  |

## Calculate the resistance of a 1.8 m length of iron wire of with a diameter of 3 mm

$$
R=\rho \frac{L}{A}
$$

## Resistivity - Try This \#2

A current of 4 A flowed through a 75 m length of metal alloy wire of area $2.4 \mathrm{~mm}^{2}$ when a p.d. of 12 V was applied across its ends. What was the resistivity of the alloy?

$$
\rho=\frac{R A}{L}
$$

## Graphing Ohm's Law



Linear Relationship means that our component is

## Graphing Ohm's Law

Many/most electrical resistors don't follow Ohm's Law all of the time... For example, incandescent light bulbs have much more resistance as they heat up



Non-linear Relationship means that our component is $\qquad$

## Graphing Ohm's Law

Find $V$ and $R$ for the resistors $X$ and $Y$ when the current is $2 A$

X | $V$ |  |
| :---: | :--- |
| 1 |  |
| $R$ |  |

$Y$| $V$ |  |
| :---: | :--- |
| 1 |  |
| $R$ |  |



## Lesson Takeaways

$\square$ I can describe the different factors the affect resistance
$\square$ I can define resistivity as a property of a material
II can compare ohmic and non-ohmic resistors

