Equivalent Resistance

IB PHYSICS | ELECTRICITY

Series and Parallel

Series

Parallel

Straw "Resistor"

A good physical model for current travelling through resistors is blowing through a straw.

1 resistor

3 resistors in series

3 resistors in parallel

Combining Resistors

Adding resistors in series increases overall resistance

Adding resistors in parallel
decreases overall resistance

Compare these Combos...

Which example has the lowest overall resistance? Assume that every resistor is the same.

Combining Resistors | Series

When combining resistors in series, the resistances are simply added up as if they were one large resistor

$$
R_{\text {total }}=R_{1}+R_{2}+\cdots
$$

Combining Resistors | Parallel

When combining resistors in parallel, the overall resistance decreases to produce a smaller equivalent resistance

$$
R_{\text {total }}=\left(R_{1}^{-1}+R_{2}^{-1}+\cdots\right)^{-1} \quad R_{\text {total }}^{-1}=\left(R_{1}^{-1}+R_{2}^{-1}+\cdots\right)
$$

Combining Resistors - Try This

$$
R_{T}=4+6+8=18 \Omega
$$

$$
\begin{aligned}
& \frac{1}{R_{T}}=\frac{1}{4}+\frac{1}{6} \Rightarrow R_{T}=\frac{1}{\frac{1}{4}+\frac{1}{6}} \\
& R_{T}=\left(4^{-1}+6^{-1}\right)^{-1}=2.4 \Omega
\end{aligned}
$$

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} I & =\frac{\Delta q}{\Delta t} \\ F & =k \frac{q_{1} q_{2}}{r^{2}} \\ k & =\frac{1}{4 \pi \varepsilon_{0}} \\ V & =\frac{W}{q} \\ E & =\frac{F}{q} \\ I & =n A v q \end{aligned}$	Kirchhoff's circuit laws: $\begin{gathered} \Sigma V=0 \text { (loop) } \\ \Sigma I=0 \text { (junction) } \\ R=\frac{V}{I} \\ P=V I=I^{2} R=\frac{V^{2}}{R} \\ \hline R_{\text {total }}=R_{1}+R_{2}+\cdots \\ \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ \rho=\frac{R A}{L} \end{gathered}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$

Equivalent Resistance

Try This | Equivalent Resistance

$$
\left(9^{-1}+18^{-1}\right)^{-1}=6 \Omega
$$

62

This could be bigger...

Lesson Takeaways

\square I can calculate the equivalent resistance for combinations of resistors in series and parallel
\square I can systematically step through the calculation of the equivalent resistance for a complex combination

