Equivalent Resistance

IB PHYSICS | ELECTRICITY

Series and Parallel

Parallel

Straw "Resistor"

A good physical model for current travelling through resistors is blowing through a straw.

Combining Resistors

Adding resistors in series **increases** overall resistance

Adding resistors in parallel **decreases** overall resistance

Compare these Combos...

Which example has the lowest overall resistance? Assume that every resistor is the same.

Combining Resistors | Series

When combining resistors in series, the resistances are simply added up as if they were one large resistor

$$R_{total} = R_1 + R_2 + \cdots$$

Combining Resistors | Parallel

Combining Resistors – Try This

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta t}$	Kirchhoff's circuit laws: $\Sigma V = 0$ (loop)
$F = k \frac{q_1 q_2}{r^2}$	$\Sigma I = 0$ (junction)
$k = \frac{1}{4\pi\varepsilon_0}$	$R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2 R = \frac{V^2}{R}$
$E = \frac{F}{q}$	$\frac{R_{\text{total}}}{R_{\text{total}}} = \frac{R_1 + R_2 + \cdots}{R_2 + \frac{1}{R_2} + \frac{1}{R_2} + \cdots}$
I = nAvq	$\rho = \frac{RA}{L}$
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$

Equivalent Resistance

Try This | Equivalent Resistance

This could be bigger...

Lesson Takeaways

- □ I can calculate the equivalent resistance for combinations of resistors in series and parallel
- □ I can systematically step through the calculation of the equivalent resistance for a complex combination