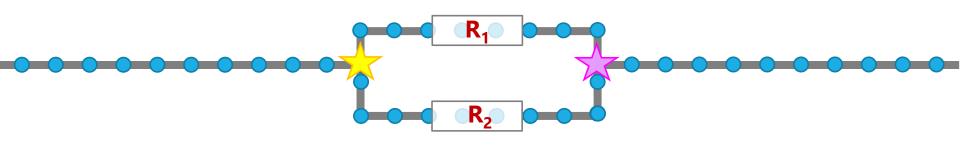
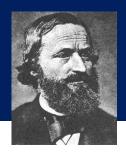
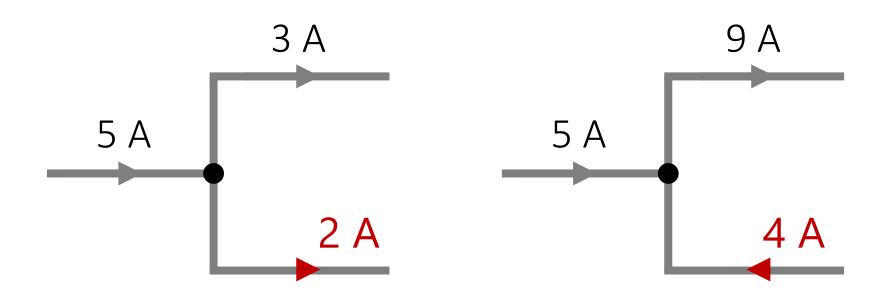

Circuit Analysis


IB PHYSICS | ELECTRICITY

Review of Parallel Circuits


- Separate branches
- Current splits up between the different pathways



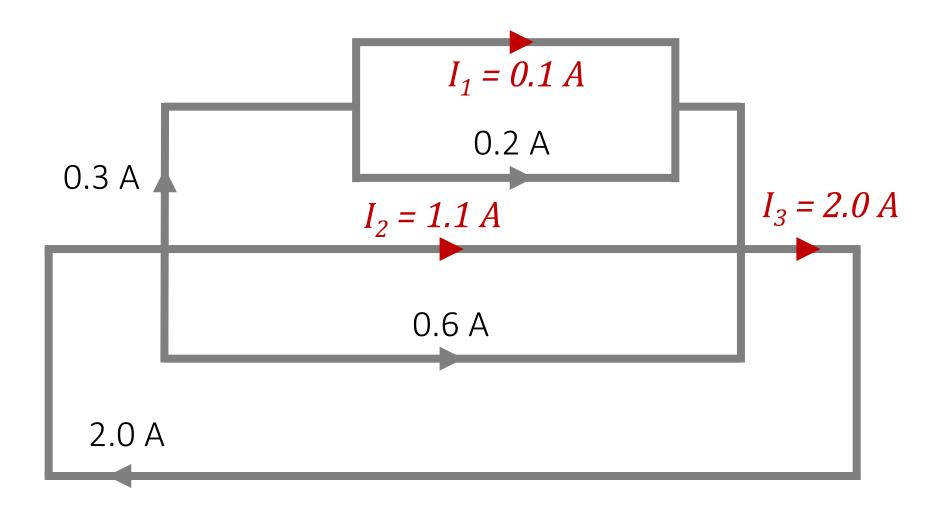
Kirchhoff's First Law

The total current coming into a junction must equal the total current leaving the same junction

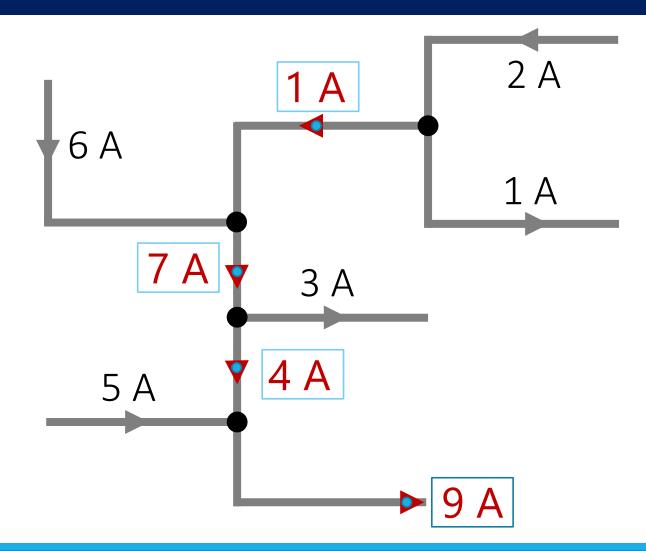
Kirchhoff's First Law

$$\Sigma I = 0$$
 (junction)

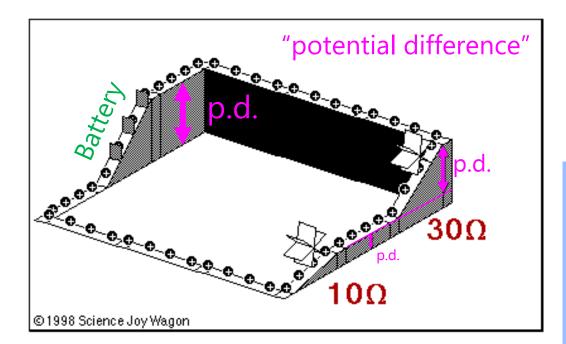
Entering Junction	$\rightarrow \bullet$	Positive
Exiting Junction	$\bullet \rightarrow$	Negative

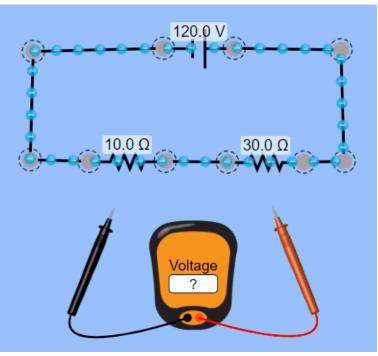

4 A

5 A


IB Physics Data Booklet

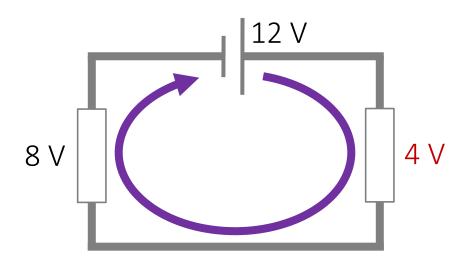
Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta r}$	Kirchhoff's circuit laws:
Δt	$\Sigma V = 0$ (loop)
$F = k \frac{q_1 q_2}{r^2}$	$\Sigma I = 0$ (junction)
$k = \frac{1}{4\pi\varepsilon_0}$	$R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2 R = \frac{V^2}{R}$
$E = \frac{F}{-}$	$R_{\rm total} = R_1 + R_2 + \cdots$
$L = -\frac{1}{q}$ $I = nAvq$	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$
	$\rho = \frac{RA}{L}$
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$


Find the Missing Currents


Follow the Current...

Review of the Water Flow Model

The voltage used by the resistors equals the voltage supplied by the battery Each resistor has a "voltage drop"


Kirchhoff's Second Law

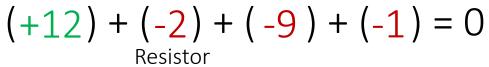
The sum of the voltages (potential differences) provided must equal the voltages dissipated across components

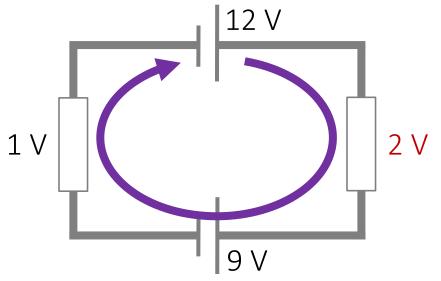
 $\Sigma V = 0$ (loop)

Across Batteries

Negative to Positive	$\rightarrow +$	Positive	Over Resistors:	
Positive to Negative	$\rightarrow $	Negative	Always Negative	

(+12) + (-4) + (-8) = 0Resistor


Kirchhoff's Second Law



Across Batteries

 $\Sigma V = 0$ (loop)

Negative to Positive	→卝	Positive	Over Resistors:
Positive to Negative	$\rightarrow +$	Negative	Always Negative

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta t}$ $F = k \frac{q_1 q_2}{r^2}$ $k = \frac{1}{4\pi\varepsilon_0}$ $V = \frac{W}{q}$ $E = \frac{F}{q}$ $I = nAvq$	Kirchhoff's circuit laws: $\Sigma V = 0 \text{ (loop)}$ $\Sigma I = 0 \text{ (junction)}$ $R = \frac{V}{I}$ $P = VI = I^2 R = \frac{V^2}{R}$ $R_{\text{total}} = R_1 + R_2 + \cdots$ $\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$ RA
Sub-topic 5.3 – Electric cells	$\rho = \frac{RA}{L}$ Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$

The Tools for your Toolbox 🟵

Ohm's Law: If you know two of the three electrical properties: V, I, or R

 $R = \frac{V}{I}$

Kirchhoff's Voltage Law $\Sigma V = 0 \ (loop)$

Kirchhoff's Current Law $\Sigma I = 0$ (junction)

Series Combination

$$R_{total} = R_1 + R_2 + \cdots$$

Parallel Combination

$$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$$

Calculating Circuits - Series

No Junction: Current is the same throughout

Loop: Voltage supplied equals voltage dissipated

$$R_T = 1 + 3 + 2 = 6 \Omega$$

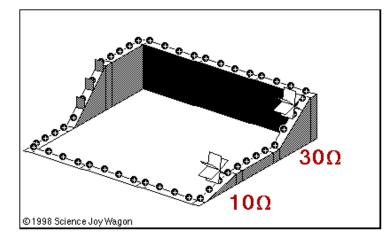
	V	l	R
R_1	2 V	2 A	1Ω
R ₂	6 V	2 A	3Ω
R ₃	4 V	2 A	2 Ω
Total	12 V	2 A	6 Ω

$$I_T = \frac{V}{R} = \frac{12}{6} = 2$$
 A

17

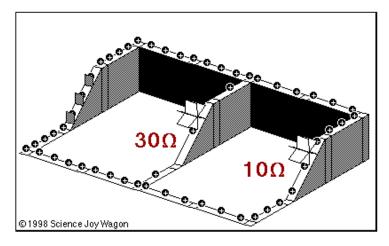
17

Calculating Circuits - Parallel


 R_{1} $G \Omega$ R_{2} R_{2}

VIR R_1 12 V2 A6 Ω R_2 12 V4 A3 ΩTotal12 V6 A2 Ω

Junction: Current in = Current out


$$R_T = (6^{-1} + 3^{-1})^{-1} = 2 \Omega$$
$$I_T = \frac{V}{R} = \frac{12}{2} = 6 A \qquad I = \frac{V}{R} =$$

Patterns

Series Circuit

- Voltage is divided between components
- Current is the same for all components

Parallel Circuit

- Voltage is the same for each branch
- Current splits at each junction

Lesson Takeaways

- I can use Kirchhoff's First Law to determine an unknown current at a junction
- I can use Kirchhoff's Second Law to determine an unknown voltage drop in a loop
- □ I can calculate voltage, current, and resistance for every component in a simple series or parallel circuit
- □ I can compare and contrast the properties for simple series and parallel circuits