Circuit Analysis

IB PHYSICS | ELECTRICITY

Review of Parallel Circuits

- Separate branches
- Current splits up between the different pathways
is Junctions is

Kirchhoff's First Law

The total current coming into a junction must equal the total current leaving the same junction

3 A

2 A

Kirchhoff's First Law

$\Sigma I=0$ (junction)

Entering Junction	$\rightarrow \bullet$	Positive
Exiting Junction	$\bullet \rightarrow$	Negative

$(+5)+(-3)+(-2)=0$
3 A

$$
\frac{(+5)+(-9)+(+4)=0}{9 \mathrm{~A}}
$$

5 A

4 A

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} & I=\frac{\Delta q}{\Delta t} \\ & F=k \frac{q_{1} q_{2}}{r^{2}} \\ & k=\frac{1}{4 \pi \varepsilon_{0}} \\ & V=\frac{W}{q} \\ & E=\frac{F}{q} \\ & I=n A v q \end{aligned}$	Kirchhoff's circuit laws: $\begin{aligned} & \quad \Sigma V=0 \text { (loop) } \\ & \quad \Sigma I=0 \text { (junction) } \\ & R=\frac{V}{I} \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \\ & R_{\text {total }}=R_{1}+R_{2}+\cdots \\ & \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ & \rho=\frac{R A}{L} \end{aligned}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$

Find the Missing Currents

Follow the Current...

Review of the Water Flow Model

Each resistor has a "voltage drop"

The voltage used by the resistors equals the voltage supplied by the battery

Kirchhoff's Second Law

The sum of the voltages (potential differences) provided must equal the voltages dissipated across components

$$
\Sigma V=0(\text { loop })
$$

Across Batteries

Negative to Positive	$\rightarrow-1$	Positive
Oositive to Negative	$\rightarrow \mid$	Over Resistors:
Pogative	Always Negative	

$$
(+12)+\underset{\text { Resistor }}{(-4)}+(-8)=0
$$

Kirchhoff's Second Law

Across Batteries

$\Sigma V=0$ (loop)

Negative to Positive	$\rightarrow-\mid$	Positive
Positive to Negative	$\rightarrow-\vdash$	Over Resistors:

$$
(+12)+\underset{\text { Resistor }}{(-2)}+(-9)+(-1)=0
$$

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} I & =\frac{\Delta q}{\Delta t} \\ F & =k \frac{q_{1} q_{2}}{r^{2}} \\ k & =\frac{1}{4 \pi \varepsilon_{0}} \\ V & =\frac{W}{q} \\ E & =\frac{F}{q} \\ I & =n A v q \end{aligned}$	$\begin{aligned} & \text { Kirchhoff's circuit laws: } \\ & \Sigma V=0 \text { (loop) } \\ & \Sigma I=0 \text { (junction) } \\ & R=\frac{V}{I} \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \\ & R_{\text {total }}=R_{1}+R_{2}+\cdots \\ & \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ & \rho=\frac{R A}{L} \end{aligned}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$

The Tools for your Toolbox ©

Ohm's Law: If you know two of the three electrical properties: V, I, or R

$$
R=\frac{V}{I}
$$

Kirchhoff's Voltage Law

$$
\Sigma V=0(\text { loop })
$$

Kirchhoff's Current Law
$\Sigma I=0$ (junction)
Series Combination

$$
R_{\text {total }}=R_{1}+R_{2}+\cdots
$$

Parallel Combination

$$
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots
$$

Calculating Circuits - Series

No Junction: Current is the same throughout

Loop: Voltage supplied equals voltage dissipated

	V	I	R
R_{1}	2 V	2 A	1Ω
R_{2}	6 V	2 A	3Ω
\mathbf{R}_{3}	4 V	2 A	2Ω

Total
 12 V 2 A
 6Ω

$$
R_{T}=1+3+2=6 \Omega \quad I_{T}=\frac{V}{R}=\frac{12}{6}=2 \mathrm{~A}
$$

Calculating Circuits - Parallel

Loop: Voltage supplied equals voltage dissipated Junction: Current in = Current out

	V	I	\mathbf{R}
\mathbf{R}_{1}	12 V	2 A	6Ω
\mathbf{R}_{2}	12 V	4 A	3Ω
Total	12 V	6 A	2Ω

$$
\begin{aligned}
& R_{T}=\left(6^{-1}+3^{-1}\right)^{-1}=2 \Omega \\
& I_{T}=\frac{V}{R}=\frac{12}{2}=6 \mathrm{~A} \quad I=\frac{V}{R}=
\end{aligned}
$$

Patterns

Series Circuit

- Voltage is divided between components
- Current is the same for all components

Parallel Circuit

- Voltage is the same for each branch
- Current splits at each junction

Lesson Takeaways

\square I can use Kirchhoff's First Law to determine an unknown current at a junction
\square I can use Kirchhoff's Second Law to determine an unknown voltage drop in a loop
\square I can calculate voltage, current, and resistance for every component in a simple series or parallel circuit
\square I can compare and contrast the properties for simple series and parallel circuits

