Circuit Analysis

IB PHYSICS | ELECTRICITY

Review of Parallel Circuits

Kirchhoff's First Law

The total current coming into a junction must equal the total current leaving the same junction

Kirchhoff's First Law

Entering Junction	$\rightarrow \bullet$	Positive
Exiting Junction	$\bullet \rightarrow$	Negative

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents		
$I = \frac{\Delta q}{\Delta t}$ $F = k \frac{q_1 q_2}{r^2}$ $k = \frac{1}{4\pi\varepsilon_0}$ $V = \frac{W}{q}$ $E = \frac{F}{q}$	Kirchhoff's circuit laws: $\Sigma V = 0 \text{ (loop)}$ $\Sigma I = 0 \text{ (junction)}$ $R = \frac{V}{I}$ $P = VI = I^2 R = \frac{V^2}{R}$ $R_{\text{total}} = R_1 + R_2 + \cdots$ $1 \qquad 1 \qquad 1 \qquad 1$		
I = nAvq	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$ $\rho = \frac{RA}{L}$		
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents		
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$ $F = BIL\sin\theta$		

Find the Missing Currents

Follow the Current...

Review of the Water Flow Model

Each resistor has a "voltage drop"

Kirchhoff's Second Law

The sum of the voltages (potential differences) provided must equal the voltages dissipated across components

 $\Sigma V = 0$ (loop)

Across Batteries

Negative to Positive	→卝	Positive	Over Resistors:
Positive to Negative	$\rightarrow $	Negative	Always Negative

(+12) + (-4) + (-8) = 0Resistor

Kirchhoff's Second Law

Across Batteries

 $\Sigma V = 0 \ (loop)$

Negative to Positive	→卝	Positive	Over Resistors:
Positive to Negative	→十	Negative	Always Negative

() + () + () + () = 0

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta t}$	Kirchhoff's circuit laws: $\Sigma V = 0$ (loop)
$F = k \frac{q_1 q_2}{r^2}$	$\Sigma I = 0$ (junction)
$k = \frac{1}{4\pi\varepsilon_0}$	$R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2 R = \frac{V^2}{R}$
$E = \frac{F}{a}$	$R_{\text{total}} = R_1 + R_2 + \cdots$
I = nAvq	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$
	$\rho = \frac{RA}{L}$
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$

The Tools for your Toolbox 🟵

Ohm's Law: If you know two of the three electrical properties: V, I, or R

 $R = \frac{V}{I}$

Kirchhoff's Voltage Law $\Sigma V = 0 \ (loop)$

Kirchhoff's Current Law $\Sigma I = 0$ (junction)

Series Combination

$$R_{total} = R_1 + R_2 + \cdots$$

Parallel Combination

$$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$$

Calculating Circuits - Series

Calculating Circuits - Parallel

	V	R
R ₁		6 Ω
R_2		3Ω
Total	12 V	

Patterns

Lesson Takeaways

- I can use Kirchhoff's First Law to determine an unknown current at a junction
- I can use Kirchhoff's Second Law to determine an unknown voltage drop in a loop
- □ I can calculate voltage, current, and resistance for every component in a simple series or parallel circuit
- □ I can compare and contrast the properties for simple series and parallel circuits