Non-Ideal Meters

IB PHYSICS | ELECTRICITY

The Observer Effect

When taking any scientific measurement, there is always the possibility that the act of taking the measurement will change what is being measured

The Observer Effect

When we measure **voltage** or **current** in a circuit, we want to make sure to minimize an effect that our tool has on the circuit so that we get the most accurate results

Ammeter

Ammeter

Hooked up in <u>series</u> with the component being measured

Ideal Ammeter:

$$[R = 0 \Omega]$$

Measuring the Current

What is the reading for the current flowing through this ideal ammeter?

$$R_T = 8 \Omega$$

$$I = \frac{V}{R} = \frac{12}{8} = \mathbf{1.5 A}$$

The ammeter has no effect on the current that it's measuring

What if Ammeter isn't ideal?

 2Ω What is the reading for the current flowing through this ideal ammeter?

$$R_T = 8\Omega$$

$$R_T = 8\Omega$$

$$I = \frac{V}{R} = \frac{12}{8} = \frac{1.2 \text{ A}}{1.5 \text{ A}}$$

The non-ideal ammeter's resistance slows down the current that it's measuring

Voltmeter

Hooked up in <u>parallel</u> with the component being measured

Ideal Voltmeter:

$$[R = \infty \Omega]$$

Measuring the Voltage

What is the reading for the ideal voltmeter across the resistor R_1 ?

$$R_T = \frac{1}{\frac{1}{6} + \frac{1}{\infty}} + 2$$

$$R_T = 6 + 2 = 8 \Omega$$

Measuring the Voltage

Try This

Calculate the resistance of this non-ideal meter:

Ammeter Reading

1.2 A

- Current is the same for all components
- Calculate total resistance from voltage and current
- Calculate ammeter resistance

$$R = \frac{V}{I} = \frac{12}{1.2} = 10 \ \Omega$$

$$R_T = 10 \Omega = 3 + 6.5 + A$$

$$A = 0.5 \Omega$$

Try This

Calculate the resistance of this non-ideal meter:

Voltmeter Reading

7 V

- Use voltage loops to calculate voltage for R₁ and R₂
- Calculate current for R₁ and R₂
- Use current junction to find current through meter
- Calculate resistance of voltmeter

$$R = \frac{V}{R}$$
 $R = \frac{V}{I} = \frac{7}{0.25}$ $R = 28 \Omega$

Lesson Takeaways

- ☐ I can connect a meter to measure current or voltage
- ☐ I can describe the conditions required for an ideal ammeter or voltmeter
- ☐ I can calculate for a situation when the meter isn't ideal