ELECTRICITY

IB PHYSICS | COMPLETED NOTES

Electrical Properties

IB PHYSICS | ELECTRICITY

Voltage

Current

Remember back...

What is potential energy?

Stored Energy

Voltage

Current

Voltage

Voltage is the Potential Energy **Difference** between two locations Voltage = Potential Difference

Symbol: V Unit: Volts [V]

Voltage

Current

Resistance

p.d.

Current

The rate at which charges move through a conductor

Flow of Electrons

Symbol: I Unit: Amperes [A]

Voltage

Current

Current

Why do the electrons flow instead of protons or neutrons?

Outside of the atom so they are more easily transferred

Voltage

Current

Resistance

How difficult it is for electrons to flow

Which one has more resistance for water flow?

Voltage

Current

Conductors and Insulators

Voltage

Current

Electrical Properties

Property	What is it?	Symbol	Unit
Voltage	Potential Difference	V	Volts [V]
Current	The rate at which the charges move through wire	Ι	Amps [A]
Resistance	How hard it is for current to flow through a conductor	R	Ohms [Ω]

Voltage

Current

Resistance

How are they Related?

Voltage

Current

How are they Related?

Voltage

Current

Voltage

Current

Resistance

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta t}$	Kirchhoff's circuit laws:
	$\Sigma V = 0$ (loop)
$F = k \frac{q_1 q_2}{r^2}$	$\Sigma I = 0$ (junction)
$k = \frac{1}{4\pi\varepsilon_0}$	$R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2 R = \frac{V^2}{R}$
$E = \frac{F}{-}$	$R_{\rm total} = R_1 + R_2 + \cdots$
$ \begin{array}{l} $	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$
	$\rho = \frac{RA}{L}$
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$

Voltage

Current

Try this...

What is the voltage of a battery that produces a current of 1.5 amps through a 3 ohm resistor? I = 1.5 A

 $R = 3 \Omega$ $V = I \times R = 1.5 \times 3 = 4.5 V$ V = ??

What resistance would produce a current of 5 amps from a 120-volt power source?

I = 5 A V = 120 V $R = \frac{V}{I} = \frac{120}{5} = 24 \Omega$ R = ??

Voltage

Current

Resistance

Remember Power?

Voltage

Current

Resistance

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta t}$	Kirchhoff's circuit laws:
	$\Sigma V = 0$ (loop)
$F = k \frac{q_1 q_2}{r^2}$	$\Sigma I = 0$ (junction)
$k = \frac{1}{4\pi\varepsilon_0}$	$R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2 R = \frac{V^2}{R}$
$E = \frac{F}{-}$	$R_{\rm total} = R_1 + R_2 + \cdots$
$E = -\frac{1}{q}$ $I = nAvq$	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$
	$\rho = \frac{RA}{L}$
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$

Voltage

Current

Resistance

Calculating Power

A blender runs on 5 amps of current on a 120 V. How much power is it drawing?

I = 5 A V = 120 V P = VI = (120)(5)= 600 W

$$P = VI = I^2 R = \frac{V^2}{R}$$

Voltage

Current

Resistance

Different Devices... Different Power

Common Appliances	Estimated Watts
Blender	300-1000
Microwave	1000-2000
Waffle Iron	800-1500
Toaster	800-1500
Hair Dryer	1000-1875
TV 32" LED/LCD	50
TV 42" Plasma	240
Blu-Ray or DVD Player	15
Video Game Console (Xbox / PS4 / Wii)	40-140

What do you notice?

Heat

Voltage

Current

Lesson Takeaways

- □ I can describe the properties of Voltage, Current, Resistance, and Power
- □ I can use Ohm's Law to mathematically relate these electrical properties and solve for an unknown

Current

Circuits

IB PHYSICS | ELECTRICITY

Circuits

Resistance in a Circuit

There are many different components that act as resistors when placed in a circuit

Resistance and Electron Flow

Electrons will follow the path of least resistance

short circuit

Combining Components

Connecting in Series

- Components in one single pathway
- Current flows the same through everything

Connecting in Parallel

- Separate branches
- Current splits up between the different pathways

Water Flow Model

Measuring Circuits

When we measure **voltage** or **current** in a circuit, we need to connect our instrumentation in the right way

Ammeter

Hooked up in <u>Series</u> with the component being measured

To measure the current, the current must flow through the ammeter

Measuring Current

Measuring Current

Voltmeter

Hooked up in **parallel** with the component being measured

Measuring Voltage

Measuring Voltage

Lesson Takeaways

- □ I can describe the direction of conventional current compared to the movement of charges through a circuit
- I can identify component combinations as parallel or series
- I can describe how current flows through parallel and series resistors
- I can describe the set up to measure current and voltage in a circuit

Resistivity

IB PHYSICS | ELECTRICITY

Resistance

What factors affect the resistance of a wire?

- Cross-sectional Area
- Length
- Material

Resistance

Imagine that you are testing the resistance of a straw while drinking a milkshake...

Calculating Resistance

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta q}$	Kirchhoff's circuit laws:
Δt	$\Sigma V = 0$ (loop)
$F = k \frac{q_1 q_2}{r^2}$	$\Sigma I = 0$ (junction)
$k = \frac{1}{4\pi\varepsilon_0}$	$R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2 R = \frac{V^2}{R}$
$E = \frac{F}{L}$ L	$R_{\rm total} = R_1 + R_2 + \cdots$
$\begin{bmatrix} L & -\frac{-}{q} \\ I = nAvq \end{bmatrix} \qquad $	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$
	$\rho = \frac{RA}{L}$
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$

Resistivity

Resistivity p changes depending on the material used.

Conductor Material	Resistivity (Ohm meters @ 20 °C)	
Silver	1.64 × 10 ⁻⁸	
Copper	1.72 × 10 ⁻⁸	
Aluminum	2.83 × 10 ⁻⁸	
Tungsten	5.50 × 10 ⁻⁸	
Nickel	7.80 × 10 ⁻⁸	
Iron	12.0 × 10 ⁻⁸	
Constantan	49.0 × 10 ⁻⁸	
Nichrome II	110 × 10 ⁻⁸	

Lower Resistivity -> Better Conductor

Resistivity – Try This #1

Conductor Material	Resistivity (Ohm meters @ 20 °C)	
Silver	1.64 × 10 ⁻⁸	
Copper	1.72 × 10 ⁻⁸	
Aluminum	2.83 × 10 ⁻⁸	
Tungsten	5.50 × 10 ⁻⁸	
Nickel	7.80 × 10 ⁻⁸	
Iron	12.0 × 10 ⁻⁸	
Constantan	49.0 × 10 ⁻⁸	
Nichrome II	110 × 10 ⁻⁸	

Calculate the resistance of a 1.8 m length of iron wire of with a diameter of 3 mm

 $R = (12.0 \times 10^{-8}) \frac{(1.8)}{(7.07 \times 10^{-6})}$

 $R = \rho \frac{L}{A} \qquad L = 1.8 \text{ m}$ $\rho = 12.0 \times 10^{-8} \Omega \text{m}$ $R = 0.0306 \,\Omega$

 $A = \pi (0.003/2)^2 = 7.07 \times 10^{-6} \text{ m}^2$

Resistivity – Try This #2

A current of 4 A flowed through a 75 m length of metal alloy wire of area 2.4 mm² when a p.d. of 12 V was applied across its ends. What was the resistivity of the alloy?

$$\rho = \frac{RA}{L}$$

$$R = \frac{V}{I} = \frac{12}{4} = 3 \Omega$$

$$L = 75 \text{ m}$$

$$\rho = \frac{(3)(2.4 \times 10^{-6})}{(75)}$$

$$A = 2.4 \text{ mm}^2 \times \left(\frac{1 \text{ m}}{1000 \text{ mm}}\right)^2$$

$$= 9.6 \times 10^{-8} \Omega \text{m}$$

$$A = 2.4 \times 10^{-6} \text{ m}^2$$

Graphing Ohm's Law

Linear Relationship means that our component is <u>Ohmic</u>

Resistance is constant

Graphing Ohm's Law

Many/most electrical resistors don't follow Ohm's Law all of the time... For example, incandescent light bulbs have much more resistance as they heat up

Non-linear Relationship means that our component is <u>Non-ohmic</u>

Graphing Ohm's Law

Find V and R for the resistors X and Y when the current is 2A

Equivalent Resistance

IB PHYSICS | ELECTRICITY

Series and Parallel

Parallel

Straw "Resistor"

A good physical model for current travelling through resistors is blowing through a straw.

Combining Resistors

Adding resistors in series **increases** overall resistance

Adding resistors in parallel **decreases** overall resistance

Compare these Combos...

Which example has the lowest overall resistance? Assume that every resistor is the same.

Combining Resistors | Series

When combining resistors in series, the resistances are simply added up as if they were one large resistor

$$R_{total} = R_1 + R_2 + \cdots$$

Combining Resistors | Parallel

Combining Resistors – Try This

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta t}$	Kirchhoff's circuit laws:
	$\Sigma V = 0$ (loop)
$F = k \frac{q_1 q_2}{r^2}$	$\Sigma I = 0$ (junction)
$k = \frac{1}{4\pi\varepsilon_0}$	$R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2 R = \frac{V^2}{R}$
$E = \frac{F}{-}$	$R_{\rm total} = R_1 + R_2 + \cdots$
$L = \frac{1}{q}$ $I = nAvq$	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$
	$\rho = \frac{RA}{L}$
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$

Equivalent Resistance

Try This | Equivalent Resistance

This could be bigger...

Lesson Takeaways

- □ I can calculate the equivalent resistance for combinations of resistors in series and parallel
- □ I can systematically step through the calculation of the equivalent resistance for a complex combination

Circuit Analysis

IB PHYSICS | ELECTRICITY

Review of Parallel Circuits

- Separate branches
- Current splits up between the different pathways

Kirchhoff's First Law

The total current coming into a junction must equal the total current leaving the same junction

Kirchhoff's First Law

$$\Sigma I = 0$$
 (junction)

Entering Junction	$\rightarrow \bullet$	Positive
Exiting Junction	$\bullet \rightarrow$	Negative

$$(+5) + (-3) + (-2) = 0$$

3 A
5 A
2 A

$$(+5) + (-9) + (+4) = 0$$

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta r}$	Kirchhoff's circuit laws:
Δt	$\Sigma V = 0$ (loop)
$F = k \frac{q_1 q_2}{r^2}$	$\Sigma I = 0$ (junction)
$k = \frac{1}{4\pi\varepsilon_0}$	$R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2 R = \frac{V^2}{R}$
$E = \frac{F}{-}$	$R_{\rm total} = R_1 + R_2 + \cdots$
$L = -\frac{1}{q}$ $I = nAvq$	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$
	$\rho = \frac{RA}{L}$
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$

Follow the Current...

Try This

Review of the Water Flow Model

The voltage used by the resistors equals the voltage supplied by the battery Each resistor has a "voltage drop"

Kirchhoff's Second Law

The sum of the voltages (potential differences) provided must equal the voltages dissipated across components

 $\Sigma V = 0$ (loop)

Across Batteries

Negative to Positive	→卝	Positive	Over Resistors:
Positive to Negative	$\rightarrow $	Negative	Always Negative

(+12) + (-4) + (-8) = 0Resistor

Kirchhoff's Second Law

Across Batteries

 $\Sigma V = 0$ (loop)

Negative to Positive	→十	Positive	Over Resistors:
Positive to Negative	→∔	Negative	Always Negative
Positive to negative	יך ד	negative	Always negativ

$$+12) + (-2) + (-9) + (-1) = 0$$

Resistor

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta t}$ $F = k \frac{q_1 q_2}{r^2}$	Kirchhoff's circuit laws: $\Sigma V = 0 \text{ (loop)}$ $\Sigma L = 0 \text{ (imposing)}$
$r = \kappa r^{2}$ $k = \frac{1}{4\pi\varepsilon_{0}}$	$\Sigma I = 0$ (junction) $R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2 R = \frac{V^2}{R}$
$E = \frac{F}{q}$ $I = nAvq$	$R_{\text{total}} = R_1 + R_2 + \cdots$ $\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$
	$\rho = \frac{RA}{L}$
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$

The Big Three

Ohm's Law: If you know two of the three electrical properties: V, I, or R

Kirchhoff's Voltage Law $\Sigma V = 0 \ (loop)$

- Draw a loop
- The voltage provided must equal the voltage dissipated
- Useful if you have parallel branches to solve for

Kirchhoff's Current Law $\Sigma I = 0$ (junction)

- Calculate the current coming out of the battery (total current)
- If this splits into parallel branches, the total should still add up

Calculating Circuits - Series

No Junction: Current is the same throughout

Loop: Voltage supplied equals voltage dissipated

$$R_T = 1 + 3 + 2 = 6 \Omega$$

		V	l	R		
	R ₁	2 V	2 A	1Ω		
	R ₂	6 V	2 A	3Ω		
	R ₃	4 V	2 A	2Ω		
S	Total	12 V	2 A	6 Ω		
$I_T = \frac{V}{R} = \frac{12}{6} = 2 \text{ A} \qquad V = I \times R =$						

Calculating Circuits - Parallel

 R_{1} $G \Omega$ R_{2} R_{2}

VIR R_1 12 V2 A6 Ω R_2 12 V4 A3 ΩTotal12 V6 A2 Ω

Junction: Current in = Current out

$$R_T = (6^{-1} + 3^{-1})^{-1} = 2 \Omega$$
$$I_T = \frac{V}{R} = \frac{12}{2} = 6 A \qquad I = \frac{V}{R} =$$

Patterns

Series Circuit

- Voltage is divided between components
- Current is the same for all components

Parallel Circuit

- Voltage is the same for each branch
- Current splits at each junction

Lesson Takeaways

- I can use Kirchhoff's First Law to determine an unknown current at a junction
- I can use Kirchhoff's Second Law to determine an unknown current at a junction
- □ I can calculate voltage, current, and resistance for every component in a simple series or parallel circuit
- I can compare and contrast the properties for simple series and parallel circuits

Potential Dividers

IB PHYSICS | ELECTRICITY

Resistor

Potential Divider

The total voltage supplied by the battery is "divided" across the different resistors Each resistor has a "voltage drop"

Potential Divider

Relationship between R₁ and V_{out}

Relationship between R₂ and V_{out}

Potential Divider

Potential Divider

Find the Output Voltage:

	V	I	R
R_1	1.2 V	0.04 A	30 Ω
R_2		0.04 A	220 Ω
Total	10 V	0.04 A	250 Ω

1. Calculate total resistance and current

- 2. Current is the same for each resistor
- 3. Calculate voltage across R_1

Applications of LDRs

Designed to perform function when the amount of light changes

Potential Divider | Night Light

4. Calculate resistance of R₂

Potential Divider | Sprinkler System

A thermistor has a resistance of 2.5Ω when it is in the heat of a fire and a resistance of 650Ω in when at room temperature. An electronic switch will turn on a sprinkler system when its p.d. is above 6.0 V. What should the value of R_1 be?

*Sprinkler should activate when hot

- 1. Use voltage loop to find voltage across R₂
- 2. Calculate current through R₂

6.0 V

Electronic

Switch

- 3. Current is the same throughout circuit (no current through switch)
- 4. Calculate resistance of R₁

	V	l	R
R_1	6.0 V	1.2 A	5 Ω
R ₂	3.0 V	1.2 A	2.5 Ω
Total	9.0 V	1.2 A	

Lesson Takeaways

- I can identify the different circuit diagram symbols for different types of resistors
- □ I can describe how environmental changes can affect the resistance of LDRs and Thermistors
- □ I can describe how changing resistor values can affect the voltage drop in a potential divider circuit
- I can design a potential divider circuit to perform a certain task

Non-Ideal Meters

IB PHYSICS | ELECTRICITY

The Observer Effect

When taking any scientific measurement, there is always the possibility that the act of taking the measurement will change what is being measured

The Observer Effect

When we measure **voltage** or **current** in a circuit, we want to make sure to minimize an effect that our tool has on the circuit so that we get the most accurate results

Ammeter

Hooked up in <u>series</u> with the component being measured

Measuring the Current

What is the reading for the current flowing through this ideal ammeter?

$$R_T = 8 \Omega$$

 $I = \frac{V}{R} = \frac{12}{8} = 1.5 \text{ A}$

The ammeter has no effect on the current that it's measuring

What if Ammeter isn't ideal?

 2Ω What is the reading for the current flowing through this ideal ammeter?

The non-ideal ammeter's resistance slows down the current that it's measuring

Voltmeter

Measuring the Voltage

Measuring the Voltage

Try This

Calculate the resistance of this non-ideal meter:

Ammeter Reading 1.2 A

- Current is the same for all components
- Calculate total resistance from voltage and current
- Calculate ammeter resistance

Try This

Calculate the resistance of this non-ideal meter:

Lesson Takeaways

- □ I can connect a meter to measure current or voltage
- I can describe the conditions required for an ideal ammeter or voltmeter
- □ I can calculate for a situation when the meter isn't ideal

Batteries

IB PHYSICS | ELECTRICITY

Batteries

Primary Cells One time use Secondary Cells Rechargeable

Battery Shape	Chemistry	Nominal Voltage	Rechargable?
AA, AAA, C, and D	Alkaline or Zinc-carbon	1.5V	No
9V	Alkaline or Zinc-carbon	9V	No
Coin cell	Lithium	3V	No
Silver Flat Pack	Lithium Polymer (LiPo)	3.7V	Yes
AA, AAA, C, D (Rechargeable)	NiMH or NiCd	1.2V	Yes
Car battery	Six-cell lead-acid	12.6V	Yes

Recharging?

Some batteries can reverse the chemical reaction that produces the potential difference by passing a current through the battery in the opposite direction as it would normally travel

Batteries | emf

We've been describing batteries so far as the voltage that they provide to the circuit, but that's not the whole story...

Electromotive Force (emf)

The total energy transferred in the source per unit charge passing through it

Batteries | Internal Resistance

All batteries have some amount of internal resistance

Ohms [Ω]

Batteries | emf

What is the emf for a battery shown below?

IB Physics Data Booklet

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$I = \frac{\Delta q}{\Delta q}$	Kirchhoff's circuit laws:
Δt	$\Sigma V = 0$ (loop)
$F = k \frac{q_1 q_2}{r^2}$	$\Sigma I = 0$ (junction)
$k = \frac{1}{4\pi\varepsilon_0}$	$R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2 R = \frac{V^2}{R}$
$E = \frac{F}{-}$	$R_{\rm total} = R_1 + R_2 + \cdots$
$E = -\frac{1}{q}$	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$
I = nAvq	$R_{\rm total}$ R_1 R_2
	$\rho = \frac{RA}{L}$
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
• Essentially the same as $V = IR$	$F = BIL \sin \theta$

Batteries | emf

What is the emf for a battery shown below? $R_T = 7 + 3 + 0.5 = 10.5 \Omega$ $\varepsilon = IR_T = (1.2)(10.5)$ $\varepsilon = 12.6 V$

Batteries | Terminal Voltage

What is the terminal voltage for a battery shown below?

Batteries | Internal Resistance

What is the internal resistance of this battery as shown below?

Graphing Internal Resistance

$$\varepsilon = I(R + r)$$

$$\varepsilon = IR + Ir$$

$$V = IR$$

$$\varepsilon = V + Ir$$

$$V = \varepsilon - Ir$$

$$V = mx + b$$

$$V = (-r)I + \varepsilon$$

Lesson Takeaways

- I can describe the difference between primary and secondary cells
- □ I can define the electromotive force and describe how is it is different than the battery's terminal voltage
- □ I can solve for a circuit that includes a battery with internal resistance
- I can describe how