ELECTRICITY

IB PHYSICS | COMPLETED NOTES

Electrical Properties

IB PHYSICS | ELECTRICITY

Remember back...

What is potential energy?

Stored Energy

Voltage

Voltage is the Potential Energy Difference between two locations voltage $=$ Potential Difference p.d.

Symbol: V Unit: Volts [V]

Voltage

Current

The rate at which charges move through a conductor

Flow of Electrons

Symbol: I Unit: Amperes [A]

Current

Why do the electrons flow instead of protons or neutrons?

Outside of the atom
so they are more easily transferred

Voltage
Current

Resistance

How difficult it is for electrons to flow

Symbol: R Unit: Ohms [Ω]

Which one has more resistance for water flow?
Voltage
Current
Resistance

Conductors and Insulators

Conductors have a Insulators have a _ high
low
high resistance

Electrical Properties

| Property | What is it? | Symbol | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Voltage | Potential Difference | V | Volts
 $[\mathrm{V}]$ |
| Current | The rate at which the charges
 move through wire | I | Amps
 $[\mathrm{A}]$ |
| Resistance | How hard it is for current to
 flow through a conductor | R | Ohms
 $[\Omega]$ |

Voltage
Current
Resistance

How are they Related?

(4) Voltage
(4) Current
$V \propto I$

(4) Resistance
(t) Current
$R \propto 1 / I$

Voltage
Current
Resistance
Power

How are they Related?

Ohm's Law

Mathematical relationship between the electrical properties

$$
V=I \times R
$$

$$
I=\frac{V}{R}
$$

$$
R=\frac{V}{I}
$$

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} & I=\frac{\Delta q}{\Delta t} \\ & F=k \frac{q_{1} q_{2}}{r^{2}} \\ & k=\frac{1}{4 \pi \varepsilon_{0}} \\ & V=\frac{W}{q} \\ & E=\frac{F}{q} \\ & I=n A v q \end{aligned}$	Kirchhoff's circuit laws: $\begin{aligned} & \Sigma V=0 \text { (loop) } \\ & \Sigma I=0 \text { (junction) } \\ & \hline R=\frac{V}{I} \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \\ & R_{\text {total }}=R_{1}+R_{2}+\cdots \\ & \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ & \rho=\frac{R A}{L} \end{aligned}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$

Try this...

$\frac{V}{I}$

What is the voltage of a battery that produces a current of 1.5 amps through a 3 ohm resistor?

$$
\begin{aligned}
& I=1.5 \mathrm{~A} \\
& R=3 \Omega \\
& V=? ?
\end{aligned}
$$

(.) What resistance would produce a current of 5 amps from a 120 -volt power source?

$$
\begin{aligned}
& I=5 \mathrm{~A} \\
& V=120 \mathrm{~V}
\end{aligned}
$$

$$
R=\frac{V}{I}=\frac{120}{5}=24 \Omega
$$

Remember Power?

symbol: P Unit: Watts [W]

New Equations:

$$
V=I R
$$

$$
I=\frac{V}{R}
$$

$$
P=V I
$$

$$
P=\frac{V^{2}}{R}
$$

Voltage
Current
Resistance
Power

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} & I=\frac{\Delta q}{\Delta t} \\ & F=k \frac{q_{1} q_{2}}{r^{2}} \\ & k=\frac{1}{4 \pi \varepsilon_{0}} \\ & V=\frac{W}{q} \\ & E=\frac{F}{q} \\ & I=n A v q \end{aligned}$	Kirchhoff's circuit laws: $\begin{aligned} & \Sigma V=0 \text { (loop) } \\ & \Sigma I=0 \text { (junction) } \\ & R=\frac{V}{I} \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \\ & R_{\text {total }}=R_{1}+R_{2}+\cdots \\ & \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ & \rho=\frac{R A}{L} \end{aligned}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$

Calculating Power

A blender runs on 5 amps of current on a 120 V . How much power is it drawing?

$$
\begin{array}{rl}
I=5 \mathrm{~A} \\
V=120 \mathrm{~V} & P=V I \\
& =(120)(5) \\
& =\mathbf{6 0 0} \mathbf{W}
\end{array}
$$

Different Devices... Different Power

Common Appliances Estimated Watts

Blender	$300-1000$
Microwave	$1000-2000$
Waffle Iron	$800-1500$
Toaster	$800-1500$
Hair Dryer	$1000-1875$
TV 32" LED/LCD	50
TV 42" Plasma	240
Blu-Ray or DVD Player Video Game Console (Xbox / PS4 / Wii)	15

What do

 you notice?
Heat

Lesson Takeaways

\square I can describe the properties of Voltage, Current, Resistance, and Power
\square I can use Ohm's Law to mathematically relate these electrical properties and solve for an unknown

Circuits

IB PHYSICS | ELECTRICITY

Circuits

cell

—1|+

ac supply
voltmeter
resistor
lamp
light-dependent resistor (LDR)
transformer

diode
battery
switch
ammeter
variable resistor
potentiometer
thermistor
heating element
capacitor

Long side indicates the positive terminal

*Ben Franklin defined current as the flow of positive charges

Resistance in a Circuit

Resistance and Electron Flow

Electrons will follow the path of least resistance

short circuit

Combining Components

Series

Parallel

Connecting in Series

- Components in one single pathway
- Current flows the same through everything

Connecting in Parallel

- Separate branches
- Current splits up between the different pathways

Water Flow Model

Measuring Circuits

When we measure voltage or current in a circuit, we need to connect our instrumentation in the right way

Voltmeter

Ammeter

Ammeter

Hooked up in series with the component being measured

To measure the current, the current must flow through the ammeter

Measuring Current

Measuring Current

Voltmeter

Hooked up in parallel with the component being measured

To measure the potential difference (voltage) a voltmeter needs to connect to two locations

Measuring Voltage

Measuring Voltage

Lesson Takeaways

\square I can describe the direction of conventional current compared to the movement of charges through a circuit
\square I can identify component combinations as parallel or series
\square I can describe how current flows through parallel and series resistors
\square I can describe the set up to measure current and voltage in a circuit

Resistivity

IB PHYSICS | ELECTRICITY

Resistance

What factors affect the resistance of a wire?

- Cross-sectional Area
- Length
- Material

$$
\mathrm{R}=\frac{\rho \mathrm{L}}{\mathrm{~A}}
$$

Resistance

Imagine that you are testing the resistance of a straw while drinking a milkshake...

Calculating Resistance

L
 $R=\rho \frac{L}{A}$

$R \rightarrow$ Resistance [Ω]

$L \rightarrow$ Length [m]
$A=\pi r^{2}$
$\mathrm{A} \rightarrow$ Area $\left[\mathrm{m}^{2}\right.$]
$\rho \rightarrow$ Resistivity [$\Omega \mathrm{m}$]

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{array}{ll} I=\frac{\Delta q}{\Delta t} \\ F & =k \frac{q_{1} q_{2}}{r^{2}} \\ k & =\frac{1}{4 \pi \varepsilon_{0}} \\ V & =\frac{W}{q} \\ E & =\frac{F}{q} \\ I & =n A v q \end{array} \quad R=\rho \frac{L}{A}$	Kirchhoff's circuit laws: $\begin{gathered} \Sigma V=0 \text { (loop) } \\ \Sigma I=0 \text { (junction) } \\ R=\frac{V}{I} \\ P=V I=I^{2} R=\frac{V^{2}}{R} \\ R_{\text {total }}=R_{1}+R_{2}+\cdots \\ \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ \rho=\frac{R A}{L} \end{gathered}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$

Resistivity

Resistivity ρ changes depending on the material used.

Conductor Material	Resistivity (Ohm meters @ $\mathbf{2 0}^{\circ} \mathrm{C}$)
Silver	1.64×10^{-8}
Copper	1.72×10^{-8}
Aluminum	2.83×10^{-8}
Tungsten	5.50×10^{-8}
Nickel	7.80×10^{-8}
Iron	12.0×10^{-8}
Constantan	49.0×10^{-8}
Nichrome II	110×10^{-8}

Lower Resistivity \rightarrow Better Conductor

Resistivity - Try This \#1

Conductor Material	Resistivity (Ohm meters @ 20				
${ }^{\circ} \mathbf{C}$)		$	$	Silver	1.64×10^{-8}
:---:	:---:				
Copper	1.72×10^{-8}				
Aluminum	2.83×10^{-8}				
Tungsten	5.50×10^{-8}				
Nickel	7.80×10^{-8}				
Iron	12.0×10^{-8}				
Constantan	49.0×10^{-8}				
Nichrome II	110×10^{-8}				

Calculate the resistance of a 1.8 m length of iron wire of with a diameter of 3 mm

$$
R=\rho \frac{L}{A}
$$

$$
R=\left(12.0 \times 10^{-8}\right) \frac{(1.8)}{\left(7.07 \times 10^{-6}\right)}
$$

$R=0.0306 \Omega$

$$
A=\pi(0.003 / 2)^{2}=7.07 \times 10^{-6} \mathrm{~m}^{2}
$$

Resistivity - Try This \#2

A current of 4 A flowed through a 75 m length of metal alloy wire of area $2.4 \mathrm{~mm}^{2}$ when a p.d. of 12 V was applied across its ends. What was the resistivity of the alloy?

$$
\begin{array}{ll}
\rho=\frac{R A}{L} & \rho=\frac{(3)\left(2.4 \times 10^{-6}\right)}{(75)} \\
A=75 \mathrm{~m} \\
A=2.4 \mathrm{~m}^{2} \mathrm{~m}^{2} \times\left(\frac{1 \mathrm{~m}}{1000 \mathrm{man}}\right)^{2} & =3 \Omega \\
A=2.4 \times 10^{-6} \mathrm{~m}^{2} & =9.6 \times 10^{-8} \Omega \mathrm{~m}
\end{array}
$$

Graphing Ohm's Law

Linear Relationship means that our component is Ohmic

Resistance is constant

Graphing Ohm's Law

Many/most electrical resistors don't follow Ohm's Law all of the time... For example, incandescent light bulbs have much more resistance as they heat up

I-V Graph For A Thermistor

Non-linear Relationship means that our component is Non-ohmic

Graphing Ohm's Law

Find V and R for the resistors X and Y when the current is $2 A$

$$
\begin{aligned}
& R=\frac{V}{I} \\
& R=\frac{4 \mathrm{~V}}{2 \mathrm{~A}} \\
& \text { A } \\
& \begin{array}{l}
R=\frac{V}{I} \\
R=\frac{10 \mathrm{~V}}{2 \mathrm{~A}}
\end{array} \\
& \text { I/A } \\
& \text { V/V }
\end{aligned}
$$

Equivalent Resistance

IB PHYSICS | ELECTRICITY

Series and Parallel

Series

Parallel

Straw "Resistor"

A good physical model for current travelling through resistors is blowing through a straw.

1 resistor

3 resistors in series

3 resistors in parallel

Combining Resistors

Adding resistors in series increases overall resistance

Adding resistors in parallel
decreases overall resistance

Compare these Combos...

Which example has the lowest overall resistance? Assume that every resistor is the same.

Combining Resistors | Series

When combining resistors in series, the resistances are simply added up as if they were one large resistor

$$
R_{\text {total }}=R_{1}+R_{2}+\cdots
$$

Combining Resistors | Parallel

When combining resistors in parallel, the overall resistance decreases to produce a smaller equivalent resistance

$$
R_{\text {total }}=\left(R_{1}^{-1}+R_{2}^{-1}+\cdots\right)^{-1} \quad R_{\text {total }}{ }^{-1}=\left(R_{1}^{-1}+R_{2}^{-1}+\cdots\right)
$$

Combining Resistors - Try This

$$
R_{T}=4+6+8=18 \Omega
$$

$$
\begin{aligned}
& \frac{1}{R_{T}}=\frac{1}{4}+\frac{1}{6} \Rightarrow R_{T}=\frac{1}{\frac{1}{4}+\frac{1}{6}} \\
& R_{T}=\left(4^{-1}+6^{-1}\right)^{-1}=2.4 \Omega
\end{aligned}
$$

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} I & =\frac{\Delta q}{\Delta t} \\ F & =k \frac{q_{1} q_{2}}{r^{2}} \\ k & =\frac{1}{4 \pi \varepsilon_{0}} \\ V & =\frac{W}{q} \\ E & =\frac{F}{q} \\ I & =n A v q \end{aligned}$	Kirchhoff's circuit laws: $\begin{gathered} \Sigma V=0 \text { (loop) } \\ \Sigma I=0 \text { (junction) } \\ R=\frac{V}{I} \\ P=V I=I^{2} R=\frac{V^{2}}{R} \\ \hline R_{\text {total }}=R_{1}+R_{2}+\cdots \\ \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ \rho=\frac{R A}{L} \end{gathered}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$

Equivalent Resistance

Try This | Equivalent Resistance

$$
\left(9^{-1}+18^{-1}\right)^{-1}=6 \Omega
$$

63

This could be bigger...

Lesson Takeaways

\square I can calculate the equivalent resistance for combinations of resistors in series and parallel
\square I can systematically step through the calculation of the equivalent resistance for a complex combination

Circuit Analysis

IB PHYSICS | ELECTRICITY

Review of Parallel Circuits

- Separate branches
- Current splits up between the different pathways
is Junctions is

Kirchhoff's First Law

The total current coming into a junction must equal the total current leaving the same junction

3 A

2 A

Kirchhoff's First Law

$\Sigma I=0$ (junction)

Entering Junction	$\rightarrow \bullet$	Positive
Exiting Junction	$\bullet \rightarrow$	Negative

$(+5)+(-3)+(-2)=0$
3 A

$$
\frac{(+5)+(-9)+(+4)=0}{9 \mathrm{~A}}
$$

5 A

4 A

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$I=\frac{\Delta q}{\Delta t}$	Kirchhoff's circuit laws:
$F=k \frac{q_{1} q_{2}}{r^{2}}$	$\Sigma V=0$ (loop)
$k=\frac{1}{4 \pi \varepsilon_{0}}$	$R=\frac{\Sigma}{I}$
$V=\frac{W}{q}$	$P=V I=I^{2} R=\frac{V^{2}}{R}$
$E=\frac{F}{q}$	$R_{\text {total }}=R_{1}+R_{2}+\cdots$
$I=n A v q$	$\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots$
	$\rho=\frac{R A}{L}$
Sub-topic 5.3 - Electric cells	Sub-topic $5.4-$ Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$F=q v B \sin \theta$
	$F=B I L \sin \theta$

Follow the Current...

Try This

Review of the Water Flow Model

Each resistor has a "voltage drop"

The voltage used by the resistors equals the voltage supplied by the battery

Kirchhoff's Second Law

The sum of the voltages (potential differences) provided must equal the voltages dissipated across components

$$
\Sigma V=0(\text { loop })
$$

Across Batteries

Negative to Positive	$\rightarrow-\mid$	Positive
Oositive to Negative	$\rightarrow \mid$	Over Resistors:
Porive	Always Negative	

$$
(+12)+\underset{\text { Resistor }}{(-4)}+(-8)=0
$$

Kirchhoff's Second Law

Across Batteries

$$
\Sigma V=0(\text { loop })
$$

Negative to Positive	$\rightarrow-\downarrow$	Positive	Over Resistors:		
Positive to Negative	$\rightarrow-\vdash$	Negative		\quad	Always Negative
:---:					

$$
(+12)+\underset{\text { Resistor }}{(-2)}+(-9)+(-1)=0
$$

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} I & =\frac{\Delta q}{\Delta t} \\ F & =k \frac{q_{1} q_{2}}{r^{2}} \\ k & =\frac{1}{4 \pi \varepsilon_{0}} \\ V & =\frac{W}{q} \\ E & =\frac{F}{q} \\ I & =n A v q \end{aligned}$	$\begin{aligned} & \text { Kirchhoff's circuit laws: } \\ & \Sigma V=0 \text { (loop) } \\ & \Sigma I=0 \text { (junction) } \\ & R=\frac{V}{I} \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \\ & R_{\text {total }}=R_{1}+R_{2}+\cdots \\ & \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ & \rho=\frac{R A}{L} \end{aligned}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$

The Big Three

Ohm's Law: If you know two of the three electrical properties: V , I, or R

$$
R=\frac{V}{I}
$$

Kirchhoff's Voltage Law

$$
\Sigma V=0(\text { loop })
$$

- Draw a loop
- The voltage provided must equal the voltage dissipated
- Useful if you have parallel branches to solve for

Kirchhoff's Current Law $\Sigma I=0$ (junction)

- Calculate the current coming out of the battery (total current)
- If this splits into parallel branches, the total should still add up

Calculating Circuits - Series

No Junction: Current is the same throughout

Loop: Voltage supplied equals voltage dissipated

	V	I	R
R_{1}	2 V	2 A	1Ω
R_{2}	6 V	2 A	3Ω
\mathbf{R}_{3}	4 V	2 A	2Ω

Total
 12 V
 2 A
 6Ω

$$
R_{T}=1+3+2=6 \Omega \quad I_{T}=\frac{V}{R}=\frac{12}{6}=2 \mathrm{~A} \quad V=I \times R=
$$

Calculating Circuits - Parallel

Loop: Voltage supplied equals voltage dissipated Junction: Current in = Current out

	V	I	\mathbf{R}
\mathbf{R}_{1}	12 V	2 A	6Ω
\mathbf{R}_{2}	12 V	4 A	3Ω
Total	12 V	6 A	2Ω

$$
\begin{aligned}
& R_{T}=\left(6^{-1}+3^{-1}\right)^{-1}=2 \Omega \\
& I_{T}=\frac{V}{R}=\frac{12}{2}=6 \mathrm{~A} \quad I=\frac{V}{R}=
\end{aligned}
$$

Patterns

Series Circuit

- Voltage is divided between components
- Current is the same for all components

Parallel Circuit

- Voltage is the same for each branch
- Current splits at each junction

Lesson Takeaways

\square I can use Kirchhoff's First Law to determine an unknown current at a junction
\square I can use Kirchhoff's Second Law to determine an unknown current at a junction
\square I can calculate voltage, current, and resistance for every component in a simple series or parallel circuit
\square I can compare and contrast the properties for simple series and parallel circuits

Potential Dividers

IB PHYSICS | ELECTRICITY

Types of Resistors

cell
ac supply
voltmeter

light-dependent resistor

(LDR)

transformer
diode

$\longrightarrow \sim O$
switch
ammeter
variable resistor
potentiometer
thermistor
heating element
capacitor

- +

Resistor

Increasing
 Resistance

More length Less Area

|II||||||||

$R=\rho \frac{L}{A}$

Types of Resistors

Types of Resistors

Types of Resistors

Potential Divider

Each resistor has a "voltage drop"

The total voltage supplied by the battery is "divided" across the different resistors

Potential Divider

Relationship between R_{1} and $V_{\text {out }}$

(1) R_{1}
(4) $V_{\text {out }}$
(t) R_{1}
(t) $V_{\text {out }}$

Relationship between R_{2} and $\mathrm{V}_{\text {out }}$

(4) R_{2}
(1) $V_{\text {out }}$
(v) R_{2}
(4) $V_{\text {out }}$

Potential Divider

Relationship between R_{1} and V ?

$$
\begin{array}{llll}
\text { (1) } & R_{1} & \uparrow & R_{1} \\
\text { (1) } & V_{\text {out }} & \uparrow & V_{\text {out }}
\end{array}
$$

Relationship between R_{2} and V ?

$$
\begin{array}{ll|ll}
\text { (1) } & R_{2} & R_{2} \\
\text { (1) } & V_{\text {out }} & & V_{\text {out }}
\end{array}
$$

Potential Divider

Find the Output Voltage:

	\mathbf{V}	\mathbf{l}	\mathbf{R}
\mathbf{R}_{1}	$\mathbf{1 . 2 ~ V}$	0.04 A	30Ω
\mathbf{R}_{2}		0.04 A	220Ω
Total	10 V	0.04 A	250Ω

1. Calculate total resistance and current
2. Current is the same for each resistor
3. Calculate voltage across R_{1}

Applications of LDRs

Designed to perform function when the amount of light changes

Potential Divider | Night Light

1. Calculate current through R_{1}
2. Current is the same throughout circuit (no current through switch)
3. Use voltage loop to find voltage across R_{2}

	V	I	R
\mathbf{R}_{1}	7.0 V	0.05 A	140Ω
\mathbf{R}_{2}	2.0 V	0.05 A	40Ω
Total	9.0 V	0.05 A	

4. Calculate resistance of R_{2}

Potential Divider | Sprinkler System

Lesson Takeaways

\square I can identify the different circuit diagram symbols for different types of resistors
I I can describe how environmental changes can affect the resistance of LDRs and Thermistors
\square I can describe how changing resistor values can affect the voltage drop in a potential divider circuit
\square I can design a potential divider circuit to perform a certain task

Non-Ideal Meters

IB PHYSICS | ELECTRICITY

The Observer Effect

When taking any scientific measurement, there is always the possibility that the act of taking the measurement will change what is being measured

The Observer Effect

When we measure voltage or current in a circuit, we want to make sure to minimize an effect that our tool has on the circuit so that we get the most accurate results

Voltmeter

Ammeter

Ammeter

Hooked up in series with the component being measured

Ideal Ammeter:

$$
[R=0 \Omega]
$$

Measuring the Current

What is the reading for the current flowing through this ideal ammeter?

$$
\begin{aligned}
& R_{T}=8 \Omega \\
& I=\frac{V}{R}=\frac{12}{8}=\mathbf{1 . 5} \mathbf{A}
\end{aligned}
$$

The ammeter has no effect on the current that it's measuring

What if Ammeter isn't ideal?

2Ω

What is the reading for the current flowing through this ideat ammeter?

The non-ideal ammeter's resistance slows down the current that it's measuring

Voltmeter

Hooked up in parallel with the component being measured

Ideal Voltmeter:

$$
[R=\infty \Omega]
$$

Measuring the Voltage

Measuring the Voltage

Try This

Calculate the resistance of this non-ideal meter:
Ammeter
Reading $\quad 1.2 \mathrm{~A}$

- Current is the same for all components
- Calculate total resistance from voltage and current
- Calculate ammeter resistance

$$
\begin{aligned}
& R=\frac{V}{I}=\frac{12}{1.2}=10 \Omega \\
& R_{T}=10 \Omega=3+6.5+A \\
& \\
& \quad A=0.5 \Omega
\end{aligned}
$$

12 V

Try This

Calculate the resistance of this non-ideal meter:

Lesson Takeaways

\square I can connect a meter to measure current or voltage
\square I can describe the conditions required for an ideal ammeter or voltmeter
\square I can calculate for a situation when the meter isn't ideal

Batteries

IB PHYSICS | ELECTRICITY

Batteries

Primary Cells One time use Secondary Cells Rechargeable

Battery Shape	Chemistry	Nominal Voltage	Rechargable?
AA, AAA, C, and D	Alkaline or Zinc-carbon	1.5 V	No
9 V	Alkaline or Zinc-carbon	9 V	No
Coin cell	Lithium	3 V	No
Silver Flat Pack	Lithium Polymer (LiPo)	3.7 V	Yes
AA, AAA, C, D (Rechargeable)	NiMH or NiCd	1.2 V	Yes
Car battery	Six-cell lead-acid	12.6 V	Yes

Recharging?

Some batteries can reverse the chemical reaction that produces the potential difference by passing a current through the battery in the opposite direction as it would normally travel

Batteries | emf

We've been describing batteries so far as the voltage that they provide to the circuit, but that's not the whole story...

Electromotive Force (emf)

The total energy transferred in the source per unit charge passing through it

Symbol

ε

Unit

Volts [V]

Batteries | Internal Resistance

All batteries have some amount of internal resistance

Symbol

r

Unit

Ohms [Ω]

Batteries | emf

What is the emf for a battery shown below?

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} I & =\frac{\Delta q}{\Delta t} \\ F & =k \frac{q_{1} q_{2}}{r^{2}} \\ k & =\frac{1}{4 \pi \varepsilon_{0}} \\ V & =\frac{W}{q} \\ E & =\frac{F}{q} \\ I & =n A v q \end{aligned}$	Kirchhoff's circuit laws: $\begin{aligned} & \quad \Sigma V=0 \text { (loop) } \\ & \quad \Sigma I=0 \text { (junction) } \\ & R=\frac{V}{I} \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \\ & R_{\text {total }}=R_{1}+R_{2}+\cdots \\ & \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ & \rho=\frac{R A}{L} \end{aligned}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$ Essentially the same as $V=I R$	$\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$

Batteries | emf

What is the emf for a battery shown below?

Batteries | Terminal Voltage

What is the terminal voltage for a battery shown below?

$$
\begin{aligned}
& V_{1}=I R=(1.2)(7)=8.4 \mathrm{~V} \\
& V_{2}=I R=(1.2)(3)=3.6 \mathrm{~V} \\
& V_{T}=8.4 \mathrm{~V}+3.6 \mathrm{~V} \\
& V_{T}=12 \mathrm{~V}
\end{aligned}
$$

Batteries | Internal Resistance

What is the internal resistance of this battery as shown below?

$$
\begin{aligned}
& \varepsilon=I(R+r) \\
& 9=3(2.5+r) \\
& r=\mathbf{0 . 5 \Omega}
\end{aligned}
$$

$$
e m f=9 \mathrm{~V}
$$

Graphing Internal Resistance

$$
\begin{aligned}
& \varepsilon=I(R+r) \\
& \varepsilon=I R+I r \\
& \varepsilon=I R \\
& \varepsilon=V+I r \\
& V=\varepsilon-I r
\end{aligned}
$$

Lesson Takeaways

\square I can describe the difference between primary and secondary cells
\square I can define the electromotive force and describe how is it is different than the battery's terminal voltage
\square I can solve for a circuit that includes a battery with internal resistance
\square I can describe how

