Electricity

IB Physics Content Guide

Big Ideas

- Electricity consists of charged particles moving in a continuous circuit
- Voltage, Current, and Resistance are related to each other though Ohm's Law
- The total current flowing into a junction must equal the total current flowing out of that same junction
- The voltage dropped around a continuous loop traced in a circuit must equal the voltage provided
- Resistors can be combined in different ways to produce different results
- It is possible that the act of taking a measurement will change the value being measured
- The resistance of a wire is affected by its thickness, length, and material resistivity

Content Objectives

1 – Electrical Current

I can quantify charge in terms of Coulombs		
I can calculate the charge of a certain # of electrons and the # of electrons for a given charge		
I can describe current in terms of amps and coulombs per second		
I can describe the subatomic properties of a conductor to allow charge to flow		
I can the electron drift speed for a given current and wire		

2 – Electrical Properties

I can describe the properties of Voltage, Current, Resistance, and Power		
I can use Ohm's Law to mathematically relate these electrical properties and solve for an unknown		

3 – Circuits

I can describe the direction of conventional current compared to the movement of charges		
I can identify component combinations as parallel or series		
I can describe how current flows through parallel and series resistors		
I can describe the set up to measure current and voltage in a circuit		

4 – Calculating Resistance

I can describe the property of resistivity and how it and the wire dimensions affect resistance		
I can calculate the equivalent resistance for combinations of resistors in series and parallel		
I can step through the calculation of the equivalent resistance for a complex combination		

5 – Voltage Dividers and Batteries

I can use Kirchhoff's First Law to determine an unknown current at a junction		
I can use Kirchhoff's Second Law to determine an unknown current at a junction		
I can calculate voltage, current, and resistance for every component in a series or parallel circuit		
I can compare and contrast the properties for simple series and parallel circuits		

6 – Potential Dividers

I can identify the different circuit diagram symbols for different types of resistors		
I can describe how environmental changes can affect the resistance of LDRs and Thermistors		
I can describe how changing resistor values can affect the voltage drop in a potential divider circuit		
I can design a potential divider circuit to perform a certain task		

7 – Voltage Dividers and Batteries

I can connect a meter to measure current or voltage		
I can describe the conditions required for an ideal ammeter or voltmeter		
I can calculate for a situation when the meter isn't ideal		

8 – Batteries

I can describe the difference between primary and secondary cells		
I can define the electromotive force and describe how is it is different than terminal voltage		
I can solve for a circuit that includes a battery with internal resistance		

Electricity

Shelving Guide

Charge

Symbol	q	Unit	Coulombs [C]
Charge of 1 Electron		1.6 × 10 ⁻¹⁹ C	
# of Electrons per Coulomb		6.25 × 10 ¹⁸ e ⁻	

Drift Speed	Variable Symbol	Unit
Current	Ι	А
# of Electrons per m ³	n	
Cross Sectional Area	А	M ²
Drift Speed	V	m s⁻¹
Charge	q	С

Current

Symbol	Ι	Unit	Amperes [A]
Unit in terr	ns of Co	ulombs	$A = \frac{C}{s}$

Data Booklet Equation:

I = nAvq

Cross Sectional Area:

$$A = \pi r^2$$

Electrical Properties

Property	What is it?	Symbol	Unit
Voltage	Potential Difference	V	Volts [V]
Current	The rate at which charges move through a wire	Ι	Amperes [A]
Resistance	How hard it is for a current to flow through a conductor	R	Ohms [Ω]

Power

In terms of V and I	In terms of I and R	In terms of V and R
$P = V \times I$	$\mathbf{P} = \mathbf{I}^2 \mathbf{R}$	$P = \frac{V^2}{R}$

Ohm's Law

$V = I \times R$	$I = \frac{V}{R}$	$R = \frac{V}{I}$
		_

Measuring Circuits	Ammeter	Voltmeter
Ideal Resistance	R = 0 Ω	$R = \infty \Omega$
How is it connected to the component being measured?	Ammeters must be connected in series	Voltmeters must be connected in parallel
Drawing of meter measuring R ₁		

Resistivity	Variable Symbol	Unit
Resistivity	ρ	Ωm
Resistance	R	Ω
Cross Sectional Area	А	m ²
Length	L	m
Ohmic Resistor	Non-Ohmic F	_

$$\rho = \frac{RA}{L}$$

Cross Sectional Area:

$$A = \pi r^2$$

Equivalent Resistance

	Drawing with R_1 and R_2	Equation	
Series	R ₁ R ₂	$R_{total} = R_1 + R_2 + \cdots$	
Parallel	R_1	$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$	

Kirchhoff's Laws

$\Sigma I = 0$ (junction)		$\Sigma V = 0 \ (loop)$					
The total current coming into a junction must equal the total current leaving the same junction		The sum of the voltages (potential differences) provided must equal the voltages dissipated across components					
		Across resistors	ŀ	Always	Negative		
Entering Junction \rightarrow • Positive		Negative to Positive	\rightarrow	┦╴	Positive		
Exiting Junction	•	\rightarrow	Negative	Positive to Negative	\rightarrow	⊣⊢	Negative

Voltage Dividers

	Light-Depend	dent Resistor	Thermistor		
Symbol					
Deletienshin	Light Increases		Light	Increases	
Relationship	Resistance Decreases		Resistance	Decreases	
Circuit	Switch turns on in the dark:		Switch turns on in a fire:		

Batteries

Primary Cells	Secondary Cells
Cannot be recharged	<i>Can be recharged by passing a current through the battery in the opposite direction as it would normally travel</i>

	Variable Symbol	Unit
Electromotive Force (e.m.f)	3	V
Current	Ι	А
Circuit Resistance	R	Ω
Internal Resistance	r	Ω

Data Booklet Equation:

$$\varepsilon = I(R+r)$$