Electricity

IB Physics Content Guide

Big Ideas

- Electricity consists of charged particles moving in a continuous circuit
- Voltage, Current, and Resistance are related to each other though Ohm's Law
- The total current flowing into a junction must equal the total current flowing out of that same junction
- The voltage dropped around a continuous loop traced in a circuit must equal the voltage provided
- Resistors can be combined in different ways to produce different results
- It is possible that the act of taking a measurement will change the value being measured
- The resistance of a wire is affected by its thickness, length, and material resistivity

Content Objectives

1 - Electrical Current

I can quantify charge in terms of Coulombs		
I can calculate the charge of a certain \# of electrons and the \# of electrons for a given charge		
I can describe current in terms of amps and coulombs per second		
I can describe the subatomic properties of a conductor to allow charge to flow		
I can the electron drift speed for a given current and wire		

2 - Electrical Properties

I can describe the properties of Voltage, Current, Resistance, and Power			
I can use Ohm's Law to mathematically relate these electrical properties and solve for an unknown			

3 - Circuits

I can describe the direction of conventional current compared to the movement of charges			
I can identify component combinations as parallel or series			
I can describe how current flows through parallel and series resistors			
I can describe the set up to measure current and voltage in a circuit			

4 - Calculating Resistance

I can describe the property of resistivity and how it and the wire dimensions affect resistance		
I can calculate the equivalent resistance for combinations of resistors in series and parallel		
I can step through the calculation of the equivalent resistance for a complex combination		

5 - Voltage Dividers and Batteries

I can use Kirchhoff's First Law to determine an unknown current at a junction			
I can use Kirchhoff's Second Law to determine an unknown current at a junction			
I can calculate voltage, current, and resistance for every component in a series or parallel circuit			
I can compare and contrast the properties for simple series and parallel circuits			

6 - Potential Dividers

I can identify the different circuit diagram symbols for different types of resistors		
I can describe how environmental changes can affect the resistance of LDRs and Thermistors		
I can describe how changing resistor values can affect the voltage drop in a potential divider circuit		
I can design a potential divider circuit to perform a certain task		

7 - Voltage Dividers and Batteries

I can connect a meter to measure current or voltage		
I can describe the conditions required for an ideal ammeter or voltmeter		
I can calculate for a situation when the meter isn't ideal		

8 - Batteries

I can describe the difference between primary and secondary cells		
I can define the electromotive force and describe how is it is different than terminal voltage		
I can solve for a circuit that includes a battery with internal resistance		

Electricity

Shelving Guide

Charge

Symbol	Unit	
Charge of 1 Electron		
\# of Electrons per Coulomb		

Current

Symbol	Unit	
Unit in terms of Coulombs		

Drift Speed	Variable Symbol	Unit

$$
I=n A v q
$$

Cross Sectional Area:
$A=$

Electrical Properties

Property	What is it?	Symbol	Unit
Voltage			
Current			
Resistance			

Power

In terms of V and I	In terms of I and R	In terms of V and R
$P=$	$P=$	$P=$

Ohm's Law

$V=$	$I=$	$R=$

Measuring Circuits	Ammeter	Voltmeter
Ideal Resistance		
How is it connected to the component being measured?		
Drawing of meter measuring R_{1}		

Resistivity	Variable Symbol	Unit
Resistivity		
Resistance		
Cross Sectional Area		
Length		
Ohmic Resistor	Non-Ohmic	istor /v

Data Booklet Equation:

$$
\rho=\frac{R A}{L}
$$

Cross Sectional Area:
$A=$

Equivalent Resistance

	Drawing with R_{1} and R_{2}	Equation
Series		
Parallel		

Kirchhoff's Laws

$\Sigma I=0$ (junction)			$\Sigma V=0$ (loop)			
			Across resistors			
Entering Junction	\rightarrow	-	Negative to Positive	\rightarrow	-1	
Exiting Junction	\bullet	\rightarrow	Positive to Negative	\rightarrow	\rightarrow	

Voltage Dividers

Symbol	Light-Dependent Resistor		Thermistor	
Relationship	Light	Increases	Heat	Increases
	Resistance		Resistance	
Circuit	Switch turns on in the dark:		Switch turns on in a fire:	

Batteries

Primary Cells	Secondary Cells

	Variable Symbol	Unit
Electromotive Force (e.m.f)		
Current		
Circuit Resistance		
Internal Resistance		

Data Booklet Equation:

$$
\varepsilon=I(R+r)
$$

