Calculating Energy

IB PHYSICS | ENERGY \& MOMENTUM

Energy Calculations

$$
\begin{aligned}
& \text { Sub-topic } 2.3-\text { Work, energy and power } \\
& W=F s \cos \theta \\
& \begin{array}{|l}
E_{\mathrm{K}}=\frac{1}{2} m v^{2} \\
E_{\mathrm{P}}=\frac{1}{2} k \Delta x^{2} \\
\hline \Delta E_{\mathrm{P}}=m g \Delta h \quad \text { Kinetic Energy (KE) } \\
\text { power }=F v \\
\text { Efficiency }=\frac{\text { useful work out }}{\text { total work in }} \\
=\frac{\text { useful power out }}{\text { total power in }}
\end{array}
\end{aligned}
$$

Who has more energy??

$K E=\frac{1}{2} m v^{2}$
$=\frac{1}{2}(100)(7.67)^{2}$
$=2941 \mathrm{~J}$

$P E=m g h$
$=(100)(9.81)(3)$
$=2943 \mathrm{~J}$

Understanding Relationships

$E_{\mathrm{K}}=\frac{1}{2} m v^{2}$ Kinetic Energy (KE)
$\Delta E_{\mathrm{P}}=m g \Delta h \quad$ Potential Energy (PE)
How does PE change when you triple the height?

3 times PE

How does KE change when you triple the velocity?
$3^{2}>9$ times KE

Conservation of Mechanical Energy

```
๕**PE=15000J
```

Total Energy Before = Total Energy After
$\underset{\substack{f=[1250 \mathrm{~J} \\ \text { kE: }}}{ } 3750 \mathrm{~J}$

$\underbrace{\mathrm{P}}_{K \in=3750 \mathrm{~J}} 11250 \mathrm{~J}$
$P_{E}=0 \mathrm{~J}$ KE:

15000 J

Conservation of Energy

Conservation of Energy

A 2-kg ball is released from a height of 20 m . What is its velocity when its height has decreased to 5 m ?

$$
\begin{aligned}
m g h= & m g h+\frac{1}{2} m v^{2} \\
(2)(9.81)(20)= & (2)(9.81)(5)+\frac{1}{2}(2) v^{2} \\
392.4= & 98.1+v^{2} \\
& v=17.2 \mathrm{~m} / \mathbf{s}
\end{aligned}
$$

$\mathrm{v}=$?
$\mathbf{Z}^{--\bigcirc} \begin{aligned} & \mathrm{PE} \\ & \mathrm{KE}\end{aligned}$ 5 m

Try this

The height of the building Spider-Man (a.k.a. Peter Parker, a.k.a. Tobey McGuire) starts off on is 6 stories, or 18 meters high. The height of the building he wants to swing to is 1 story, or 3 meters high. Tobey McGuire is has a mass of approximately 72 kg . Use conservation of energy to calculate his speed when his feet touch the roof of the second building

$$
\begin{aligned}
m g h & =m g h+\frac{1}{2} m v^{2} \\
(72)(9.81)(18) & =(72)(9.81)(3)+\frac{1}{2}(72) v^{2}
\end{aligned}
$$

$$
12,714=2,119+36 v^{2}
$$

$$
v=17.2 \mathrm{~m} / \mathrm{s}
$$

Notice any similarities??

The final velocity is the same in each example. Same height change, mass doesn't matter!

Conservation of Energy

A $2-\mathrm{kg}$ ball is released from a height of 20 m . What is its velocity when its height has decreased to 5 m ?

$$
\begin{aligned}
P E+K \bar{L}= & P E+K E \\
m g h= & m g h+\frac{1}{2} m v^{2} \\
(2)(9.81)(20)= & (2)(9.81)(5)+\frac{1}{2}(2) v^{2} \\
392.4= & 98.1+v^{2} \\
& v=17.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$0 \mathrm{~m} / \mathrm{s}$ PE

20 m
$\mathrm{v}=$? PE
KE

Try this

The height of the building Spider-Man (a.k.a. Peter Parker, a.k.a. Tobey McGuire) starts off on is 6 stories, or 18 meters high. The height of the building he wants to swing to is 1 story, or 3 meters high. Tobey McGuire is has a mass of approximately 72 kg . Use conservation of energy to calculate his speed when his feet touch the roof of the second building

$$
\begin{aligned}
& P E+K E=P E+K E \\
& m g h=m g h+\frac{1}{2} m v^{2} \\
&(72)(9.81)(18)=(72)(9.81)(3)+\frac{1}{2}(72) v^{2} \\
& 12,714=2,119+36 v^{2} \\
& v=17.2 \mathbf{m} / \mathbf{s}
\end{aligned}
$$

Try this

*if you aren't given the mass, you should write out the equation and the mass will cancel

What is the velocity of a marble at point A?

Initial Energy = Final Energy

$$
P E+K \bar{L}=P E+K E
$$

$$
m g h=m g h+\frac{1}{2} m v^{2}
$$

$$
(9.81)(100)=(9.81)(70)+\frac{1}{2} v^{2}
$$

$$
v=24.3 \mathrm{~m} / \mathrm{s}
$$

No Mass? No Problem...

Water at the bottom of a waterfall has a velocity of $30 \mathrm{~m} / \mathrm{s}$ after falling 16 meters. What is the water speed at the top?

$$
\begin{aligned}
P E+K E & =P E+K E \\
\frac{1}{2} m v^{2}+m g h & =\frac{1}{2} m v^{2} \\
\frac{1}{2} v^{2}+(9.81)(16) & =\frac{1}{2}(30)^{2} \\
v & =\mathbf{2 4 . 2 \mathrm { m } / \mathrm { s }}
\end{aligned}
$$

Lesson Takeaways

\square I can describe and calculate kinetic energy and gravitational potential energy
\square I can explain the implications of the conservation of energy and show that the total energy in a closed system is always the same
\square I can interpret a scenario and set up an equality based on the energies present at different locations
\square I can use the conservation of energy to solve for an unknown energy or variable in a problem

