Calculating Energy

IB PHYSICS | ENERGY & MOMENTUM

Energy Calculations

Sub-topic 2.3 – Work, energy and power $W = Fs \cos\theta$ $E_{\rm K} = \frac{1}{2} m v^2$ $E_{\rm P} = \frac{1}{2} k \Delta x^2$ $\Delta E_{\rm P} = mg\Delta h$ power = Fvuseful work out Efficiency = total work in useful power out = total power in

Who has more energy??

 $KE = \frac{1}{2}mv^2$

PE = mgh

Understanding Relationships

How does PE change when you triple the height?

How does KE change when you triple the velocity?

Conservation of Mechanical Energy

Conservation of Energy

Conservation of Energy

A 2-kg ball is released from a height of 20 m. What is its velocity when its height has decreased to 5 m?

Try this

The height of the building Spider-Man (a.k.a. Peter Parker, a.k.a. Tobey McGuire) starts off on is 6 stories, or 18 meters high. The height of the building he wants to swing to is 1 story, or 3 meters high. Tobey McGuire has a mass of approximately 72 kg. Use conservation of energy to calculate his speed when his feet touch the roof of the second building

Notice any similarities??

Conservation of Energy

A 2-kg ball is released from a height of 20 m. What is its velocity when its height has decreased to 5 m?

$$PE + KE = PE + KE$$
$$mgh = mgh + \frac{1}{2}mv^{2}$$
$$(2)(9.81)(20) = (2)(9.81)(5) + \frac{1}{2}(2)v^{2}$$
$$392.4 = 98.1 + v^{2}$$
$$v = 17.2 \text{ m/s}$$

Try this

The height of the building Spider-Man (a.k.a. Peter Parker, a.k.a. Tobey McGuire) starts off on is 6 stories, or 18 meters high. The height of the building he wants to swing to is 1 story, or 3 meters high. Tobey McGuire is has a mass of approximately 72 kg. Use conservation of energy to calculate his speed when his feet touch the roof of the second building

PE + KE = PE + KE $mgh = mgh + \frac{1}{2}mv^2$ $(72)(9.81)(18) = (72)(9.81)(3) + \frac{1}{2}(72)v$ $12,714 = 2,119 + 36v^2$ v = 17.2 m/s

Try this

*if you aren't given the mass, you should write out the equation and the mass will cancel What is the velocity of a marble at point A?

Initial Energy = Final Energy PE + KE = PE + KE

No Mass? No Problem...

Water at the bottom of a waterfall has a velocity of 30 m/s after falling 16 meters. What is the water speed at the top?

Lesson Takeaways

- □ I can describe and calculate kinetic energy and gravitational potential energy
- I can explain the implications of the conservation of energy and show that the total energy in a closed system is always the same
- □ I can interpret a scenario and set up an equality based on the energies present at different locations
- □ I can use the conservation of energy to solve for an unknown energy or variable in a problem