Elastic Potential Energy

IB PHYSICS | ENERGY \& MOMENTUM

Calculating from a Graph

Graph of Force vs Displacement

Work of a Varying Force

Our definition of work applies only for a constant force or an average force.

$\mathrm{W}=\mathrm{Fs} \cos \theta$

What if the force varies with displacement as with stretching a spring or rubber band?

What about a Varying Force?

Work to PEe Lab

Work of a Varying Force

How can you calculate the work?

Work of a Varying Force

What work is required to stretch this spring from $x=0$ to $x=6 \mathrm{~m}$?

Elastic Potential Energy

As the pull back distance increases elastic potential energy

Hooke's Law

When a spring is stretched, there is a restoring
F force that is proportional to the displacement.

Try this...

A block with a mass of 2 kg is suspended from a spring and produces the displacement shown. What is the spring constant?

$$
F=k \Delta x
$$

Work and Energy

Work done on a system causes the system to gain or lose energy

Work of a Varying Force

Now that we know that $F=k \Delta x$, we can calculate the stored elastic potential energy with the work equation

$$
\text { Work }=F s
$$

Elastic Force and Work

$\mathrm{F}=\mathrm{k} \Delta \mathrm{x}$
 $$
E_{p}=1 / 2 k \Delta x^{2}
$$
 *The spring constant k is a property of the spring

Data Booklet

$$
\begin{aligned}
& \text { Sub-topic } 2.3-\text { Work, energy and power } \\
& \begin{array}{l}
W=F s \cos \theta \\
E_{\mathrm{K}}=\frac{1}{2} m v^{2} \\
E_{\mathrm{P}}=\frac{1}{2} k \Delta x^{2} \\
\Delta E_{\mathrm{P}}=m g \Delta h \\
\text { power }=F v \\
\text { Efficiency }=\frac{\text { useful work out }}{\text { total work in }} \\
\qquad=\frac{\text { useful power out }}{\text { total power in }}
\end{array}
\end{aligned}
$$

Conservation of Energy

How far up the 15° incline of a pinball table will a 0.1 kg pinball move after it is launched? The spring constant is $100 \mathrm{~N} / \mathrm{m}$ and is compressed by 0.08 m .

Try this...

What work is required to stretch this spring $\left(k=200 \mathrm{~N} \mathrm{~m}^{-1}\right.$) from $\Delta \mathrm{x}=0.1 \mathrm{~m}$ to $\Delta \mathrm{x}=0.4 \mathrm{~m}$?

Try this...

What work is required to stretch this spring $\left(k=200 \mathrm{~N} \mathrm{~m}^{-1}\right.$) from $\Delta \mathrm{x}=0.1 \mathrm{~m}$ to $\Delta \mathrm{x}=0.4 \mathrm{~m}$?

Why not just use the stretch change?

$$
\frac{1}{2} k \Delta x^{2}=\frac{1}{2}(200)(0.3)^{2}=9 \mathrm{~J}
$$

Example IB Question

An increasing force acts on a metal wire and the wire extends from an initial length I_{0} to a new length $/$. The graph shows the variation of force with length for the wire. The energy required to extend the wire from I_{0} to $/$ is E. The wire then contracts to half its original extension. What is the work done by the wire as it contracts?

> A. $0.25 E$
> B. $0.50 E$
> C. $0.75 E$
> D. E

Lesson Takeaways

\square I can calculate work as area bounded by a Force vs Distance graph
I I can use Hooke's Law to calculate the elastic force at a given displacement

I I can describe and calculate elastic potential energy

