Elastic Potential Energy

IB PHYSICS | ENERGY & MOMENTUM

Calculating from a Graph

Graph of Force vs Displacement

Our definition of work applies only for a <u>constant</u> force or an <u>average</u> force.

 $W = Fs \cos\theta$

What if the force <u>varies</u> with displacement as with stretching a spring or rubber band?

What about a Varying Force?

Work to PEe Lab

Click here for the simulation

How can you calculate the work?

What **work** is required to stretch this spring from x = 0 to x = 6 m?

Elastic Potential Energy

As the pull back distance increases elastic potential energy _____

Hooke's Law

Try this...

A block with a mass of 2 kg is suspended from a spring and produces the displacement shown. What is the spring constant?

$$F = k\Delta x$$

Work and Energy

Work done on a system causes the system to gain or lose energy

Now that we know that $F = k\Delta x$, we can calculate the stored elastic potential energy with the work equation

$$Work = Fs$$

Elastic Force and Work

$$F = k\Delta x$$

$$E_p = \frac{1}{2} k \Delta x^2$$

*The spring constant k is a property of the spring

Data Booklet

Sub-topic 2.3 – Work, energy and power

$$W = Fs \cos\theta$$

$$E_{K} = \frac{1}{2}mv^{2}$$

$$E_{P} = \frac{1}{2}k\Delta x^{2}$$

$$\Delta E_{P} = mg\Delta h$$

$$power = Fv$$

$$Efficiency = \frac{\text{useful work out}}{\text{total work in}}$$

$$= \frac{\text{useful power out}}{\text{total power in}}$$

Conservation of Energy

How far up the 15° incline of a pinball table will a 0.1 kg pinball move after it is launched? The spring constant is 100 N/m and is compressed by 0.08 m.

Try this...

What **work** is required to stretch this spring $(k = 200 \text{ N m}^{-1})$ from $\Delta x = 0.1 \text{ m}$ to $\Delta x = 0.4 \text{ m}$?

Try this...

What **work** is required to stretch this spring $(k = 200 \text{ N m}^{-1})$ from $\Delta x = 0.1 \text{ m}$ to $\Delta x = 0.4 \text{ m}$?

Why not just use the stretch change?

$$\frac{1}{2}k\Delta x^2 = \frac{1}{2}(200)(0.3)^2 = 9 \text{ J}$$

Example IB Question

An increasing force acts on a metal wire and the wire extends from an initial length I_0 to a new length I. The graph shows the variation of force with length for the wire. The energy required to extend the wire from I_0 to I is E. The wire then contracts to half its original extension. What is the work done by the wire as it contracts?

A. 0.25*E*

B. 0.50*E*

C. 0.75*E*

D. E

Lesson Takeaways

- ☐ I can calculate work as area bounded by a Force vs Distance graph
- ☐ I can use Hooke's Law to calculate the elastic force at a given displacement
- ☐ I can describe and calculate elastic potential energy