Impulse

IB PHYSICS | ENERGY & MOMENTUM

IB Physics Data Booklet

Remember Work?

Work = Force × Distance

Initial Energy = 0 J

Work = (5,000 N)(100 m) = 500,000 J - Energy added to system

Final Energy = 500,000 J = $\frac{1}{2}$ mv² = $\frac{1}{2}(2,000 \text{ kg})v^2$

Final Velocity = $v = 22.36 \text{ m s}^{-1}$

Introducing Impulse

Initial Momentum = 0 kg m s^{-1}

Impulse = (5,000 N)(8.94 s) = 44,700 kg m s⁻¹ - Momentum added to system

Final Momentum = $44,700 \text{ kg m s}^{-1} = \text{mv} = (2,000 \text{ kg})\text{v}$

Final Velocity = $v = 22.35 \text{ m s}^{-1}$

Impulse

Work \rightarrow Change in Energy Impulse \rightarrow Change in <u>Momentum</u>

What about Units? $[N] = [kg][m s^{-2}]$ Impulse = F × t = $[N][s] = [kg][m s^{-2}][s]$ Impulse = [N s] or $[kg m s^{-1}]^*$

*same unit as momentum

IB Physics Data Booklet

Impulse and Momentum

Impulse can act to increase or decrease an object's momentum

Final Velocity 0 *m/s* Initial Velocity 0 m/s

Initial Velocity 0 m/s

How are these the same? different?

Impulse → Slowing Down

How can we decrease the force acting on an object?

Impulse and Momentum

Impulse = $F\Delta t = \Delta p$

Same Mass Same Momentum Short Time Large Force

 $F \times \Delta t$

Same Impulse

Long Time Small Force

Impulse to Speed Up

Should a cannon have a long or short barrel to produce to largest final velocity? Why?

Both designs will experience the same force but the long barrel experiences that force for more time and creates a larger impulse / change in momentum

Marshmallow Shooter

Marshmallow Shooter

Impulse = $F\Delta t = \Delta p = m\Delta v$

More Time \rightarrow More Velocity

What if the force isn't constant?

Remember how we found work done by a varying force?

Which impulse is larger?

Same

Twice the time Half the force

The force matters!

Increase time to decrease force below a dangerous threshold

F

Lesson Takeaways

- □ I can describe the meaning of impulse and how it is related to momentum change
- □ I can conceptually describe how to decrease the force experienced in a collision
- I can determine the impulse of a collision from a force vs time graph