Impulse & Momentum Calculations

IB PHYSICS | ENERGY & MOMENTUM

Impulse Review

Work → Change in Energy Impulse → Change in Momentum

$Impulse = F\Delta t = \Delta p$

Impulse Slowing Down

Short Time Large Force

 $F \times \Delta t$

Same Mass Same Momentum

Same Impulse

Long Time Small Force

Impulse Speeding Up

Impulse = $F\Delta t = \Delta p = m\Delta v$

More Time \rightarrow More Velocity

Slapshot!

A hockey puck has a mass of 0.115 kg. A player takes a slap shot which exerts a force of 31.0 N for 0.15 sec. How fast will the puck be moving?

Initial
MomentumImpulse Added
MomentumFinal
MomentumInitial Momentum = 0 kg m s⁻¹Impulse = $F\Delta t = (31 \text{ N})(0.15 \text{ s}) = 4.65 \text{ kg m s}^{-1}$ Final Momentum = 4.65 kg m s⁻¹ = mv = (0.115 kg)v

Final Velocity = v = **40.4 m s⁻¹**

Impulse and Momentum

The 440 newton Liquid Apogee Motor (LAM) of India's Mars Orbiter Spacecraft, was successfully fired for a duration of 3.968 seconds on September 22, 2014. This operation of the spacecraft's main liquid engine was also used for the spacecraft's trajectory correction and changed its velocity by 2.18 m s⁻¹. What was the mass of the spacecraft at the time of this engine firing?

Impulse =
$$F\Delta t = \Delta p$$

Impulse = $F\Delta t$ = (440 N)(3.968 s) = 1746 kg m s⁻¹

Change in Momentum = 1746 kg m s⁻¹ = (m)(Δv)

1746 kg m s⁻¹ = (m)(2.18)

Direction Matters

Assume *u* is 30 m s⁻¹ to the left and *v* is 10 m s⁻¹ to the right. What is the change in velocity?

Change in Velocity = 40 m s⁻¹

Try This...

A 500 g baseball moves to the left at 20 m s⁻¹ striking a bat. The bat is in contact with the ball for **0.002 s**, and it leaves in the opposite direction at 40 m s⁻¹. What was average force on ball? **Initial Momentum Final Momentum**

Impulse

Added

Δp 30 kg m s⁻¹ 20 m s⁻¹ Impulse = $F\Delta t = \Delta p$

p = (0.5)(-20)

-10 kg m s⁻¹

m = 0.5 kg

Impulse = $F(0.002 \text{ s}) = 30 \text{ kg m s}^{-1}$

F = 15,000 N

p = (0.5)(40)

20 kg m s⁻¹

Impulse from a Graph

Try This...

Kara Less was applying her makeup when she drove into South's busy parking lot last Friday morning. Unaware that Lisa Ford was stopped in her lane, Kara rear-ended Lisa's rental car. Kara's 1300-kg car was moving at 5 m s⁻¹ and stopped in 0.4 seconds. What was the force?

Initial Momentum = $mv = (1,300)(5) = 6,500 \text{ kg m s}^{-1}$

```
Final Momentum = 0 \text{ kg m s}^{-1}
```

Impulse = $6,500 \text{ kg m s}^{-1} = (F)(0.4 \text{ s})$

Force = F = **16,250** N

Lesson Takeaways

- I can use impulse and momentum to solve for an unknown force
- □ I can use impulse and momentum to solve for an unknown **velocity**
- I can calculate the change in velocity when there is a direction change
- I can calculate change in momentum from a Force vs Time graph