Impulse \& Momentum Calculations

IB PHYSICS | ENERGY \& MOMENTUM

Impulse Review

Work \rightarrow Change in Energy
Impulse \rightarrow Change in Momentum

Impulse $=F \Delta t=\Delta p$

Impulse Slowing Down

Short Time
Large Force
$F \times \Delta t$

Same Mass
Same Momentum

Long Time
Small Force
Long Time
Small Force
Same Impulse

Impulse Speeding Up

Impulse $=F \Delta t=\Delta p=m \Delta v$

Same Force
Same Mass

More Time \rightarrow More Velocity

Slapshot!

A hockey puck has a mass of 0.115 kg . A player takes a slap shot which exerts a force of 31.0 N for 0.15 sec . How fast will the puck be moving?

Initial Momentum $=0 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Impulse $=\mathrm{F} \Delta \mathrm{t}=(31 \mathrm{~N})(0.15 \mathrm{~s})=4.65 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Final Momentum $=4.65 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}=\mathrm{mv}=(0.115 \mathrm{~kg}) \mathrm{v}$
Final Velocity $=\mathrm{v}=\mathbf{4 0 . 4} \mathrm{m} \mathrm{s}^{-1}$

Impulse and Momentum

The 440 newton Liquid Apogee Motor (LAM) of India's Mars Orbiter Spacecraft, was successfully fired for a duration of 3.968 seconds on September 22, 2014. This operation of the spacecraft's main liquid engine was also used for the spacecraft's trajectory correction and changed its velocity by $2.18 \mathrm{~m} \mathrm{~s}^{-1}$. What was the mass of the spacecraft at the time of this engine firing?

| Initial |
| :---: | :---: |
| Momentum |\rightarrow| Final |
| :---: |
| Momentum |\quad| Impulse Added $=F \Delta t=\Delta p$ |
| :--- |

Impulse $=\mathrm{F} \Delta \mathrm{t}=(440 \mathrm{~N})(3.968 \mathrm{~s})=1746 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Change in Momentum $=1746 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}=(\mathrm{m})(\Delta \mathrm{v})$

$$
\begin{aligned}
& 1746 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}=(\mathrm{m})(2.18) \\
& \quad \mathbf{m}=\mathbf{8 0 1} \mathbf{~ k g}
\end{aligned}
$$

Direction Matters

Assume u is $30 \mathrm{~m} \mathrm{~s}^{-1}$ to the left and v is $10 \mathrm{~m} \mathrm{~s}^{-1}$ to the right. What is the change in velocity?

Change in Velocity $=40 \mathrm{~m} \mathrm{~s}^{-1}$

Try This...

A 500 g baseball moves to the left at $20 \mathrm{~m} \mathrm{~s}^{-1}$ striking a bat. The bat is in contact with the ball for 0.002 s , and it leaves in the opposite direction at $40 \mathrm{~m} \mathrm{~s}^{-1}$. What was average force on ball?

Initial Momentum
 $$
\begin{aligned} & p=(0.5)(-20) \\ & -10 \mathrm{~kg} \mathrm{~m} \mathrm{~s} \end{aligned}
$$
 Impulse
 Added
 Δp
 $30 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$

Impulse from a Graph

Try This...

Kara Less was applying her makeup when she drove into South's busy parking lot last Friday morning. Unaware that Lisa Ford was stopped in her lane, Kara rear-ended Lisa's rental car. Kara's 1300-kg car was moving at $5 \mathrm{~m} \mathrm{~s}^{-1}$ and stopped in 0.4 seconds. What was the force?

Initial Momentum	Impulse		
Decreases Momentum			Final
:---:			
Momentum			

Initial Momentum $=m v=(1,300)(5)=6,500 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Final Momentum $=0 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$

Impulse $=6,500 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}=(\mathrm{F})(0.4 \mathrm{~s})$

Force $=F=16,250 \mathrm{~N}$

Lesson Takeaways

\square I can use impulse and momentum to solve for an unknown force
\square I can use impulse and momentum to solve for an unknown velocity
\square I can calculate the change in velocity when there is a direction change
\square I can calculate change in momentum from a Force vs Time graph

