Energy & Momentum IB Physics Content Guide

Big Ideas

- The total energy of a closed system must be constant •
- Energy is neither created nor destroyed, it just changes form •
- Work is done when a force is applied to an object and the object moves in the same direction as the applied force
- The total momentum of an isolated system is always constant •
- The force on an object when speeding up or slowing down can be affected by changing the time for the force
- The impulse of a collision is equal to the change in momentum •

Content Objectives

1 – Energy

I can use evidence (speed, stretch, height) to describe and calculate all types of energy present.		
I can describe and calculate kinetic energy		
I can describe and calculate gravitational potential energy		
I can explain the implications of the conservation of energy		
I can show that the TOTAL energy in a closed system is always the same		
I can interpret a scenario and set up an equality based on the energies present at different locations		
I can use the conservation of energy to solve for an unknown energy or variable in a problem		

2 – Work and Power

I can define and calculate the property of work		
I can identify situations where there is motion but no work being done		
I can calculate work when the force is at an angle to the direction of the motion		
I can equate work done on a system to the change in energy of an open system.		
I can use the work-energy theorem to solve for an unknown		
I can calculate power from work or velocity		

3 – Elastic Potential

I can derive a 'Joule' and 'Watt' from the fundamental units kg, m, and s.		
I can use Hooke's Law to calculate the elastic force at a given displacement		
I can use area under the curve to calculate the work of a variable force		
I can describe and calculate elastic potential energy		

4 – Conservation of Momentum

I can define and calculate momentum		
I can calculate "before" and "after" momentums for multiple objects		
I can use the conservation of momentum to solve for missing variables in linear collisions		
I can describe the process required for explosion, hit and bounce, and hit and stick scenarios		
I can describe the difference between elastic and non-elastic collisions		
I can describe how energy is not always conserved within a system		
I can calculate the amount of energy retained in a non-elastic collision		

5 – Momentum and Impulse

I can describe the meaning of impulse and how it is related to momentum change		
I can use impulse and momentum to solve for an unknown in a collision problem		
I can conceptually describe how to decrease the force experienced in a collision		
I can determine the impulse of a collision from a force vs time graph		

Energy & Momentum

	Variable Symbol	Unit
Work	W	Joules [J]
Power	Р	Watts [W]
Kinetic Energy	E _k	J
Elastic Potential Energy	Ep	J
Gravitational Potential Energy	ΔE _p	J
Spring Constant	k	N m⁻¹
Spring Stretch	Δx	m

Data Booklet Equations:

$$W = Fs \cos\theta$$

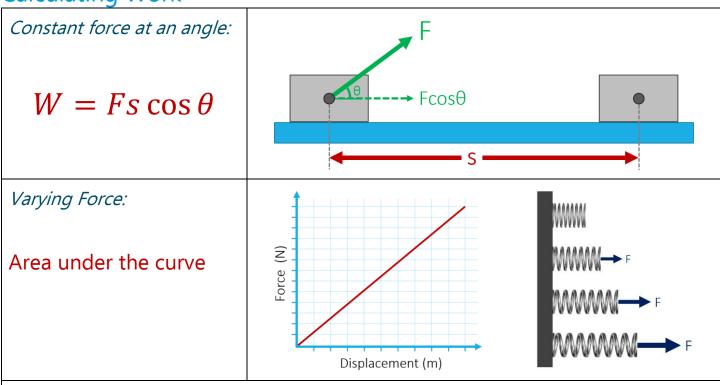
$$E_k = \frac{1}{2}mv^2$$

$$E_p = \frac{1}{2}k\Delta x^2$$

$$\Delta E_p = mg\Delta h$$
power = Fv

Types of Energy

Kinetic Energy	Elastic Potential Energy	Gravitational Potential Energy
$\frac{1}{2}mv^2$	$\frac{1}{2}k\Delta x^2$	$mg\Delta h$


Conservation of Energy

Total Energy Before = Total Energy After

Work-Energy Theorem

Work \rightarrow Energy $Fs = \frac{1}{2}mv^2$ Energy \rightarrow Work $\frac{1}{2}mv^2 = Fs$

Calculating Work

Examples of no work being done for an object in motion:

- Pushing something that doesn't move (no displacement, no work)
- Waiter carrying a tray horizontally (force is vertical, motion is horizontal)
- Orbiting object (velocity is tangent to path, force is toward the center)

Calculating Power

In terms of work and time:	In terms of force and velocity:
$Power = \frac{Work}{Time}$	$Power = Force \times Velocity = Fv$

Units

	Standard Unit	From Equation	Fundamental SI Units
Work	J	N m	kg m² s⁻²
Power	W	J s⁻¹	kg m² s⁻³

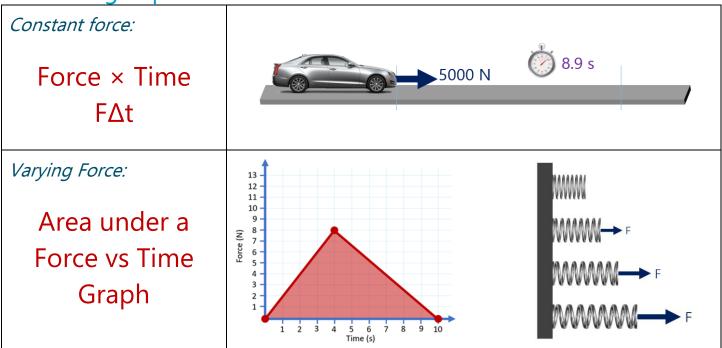
Momentum

	Variable Symbol	Unit
Momentum	р	kg m s⁻¹
Mass	m	kg
Velocity	V	m s⁻¹
Time	t	S
Kinetic Energy	Eκ	J
Impulse	Impulse	N s or kg m s ⁻¹

Data Booklet Equations.

$$p = mv$$

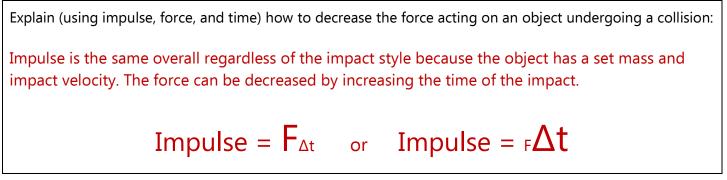
 $F = \frac{\Delta p}{\Delta t}$
 $E_K = \frac{p^2}{2m}$
Impulse = $F\Delta t = \Delta p$


Conservation of Energy Problems

	"Explosion"
	$p_{AB} = p_A + p_B$
	"Hit and Bounce"
$\bigcirc \longrightarrow \bigcirc Before \bigcirc \bigcirc After \bigcirc After \bigcirc \bigcirc After \bigcirc \bigcirc After \bigcirc \bigcirc$	$p_A + p_B = p_A + p_B$
	"Hit and Stick"
Before 6 After 6	$p_A + p_B = p_{AB}$

Types of Collisions

Elastic	Kinetic Energy is conserved (perfect hit and bounce) *Typically just found in particle collisions	
Inelastic	Kinetic Energy is not conserved	


Calculating Impulse

Impulse-Momentum Equation

Collision Safety

