Energy & Momentum IB Physics Content Guide

Big Ideas

- The total energy of a closed system must be constant
- Energy is neither created nor destroyed, it just changes form
- Work is done when a force is applied to an object and the object moves in the same direction as the applied force
- The total momentum of an isolated system is always constant
- The force on an object when speeding up or slowing down can be affected by changing the time for the force
- The impulse of a collision is equal to the change in momentum

Content Objectives

1 – Energy

I can use evidence (speed, stretch, height) to describe and calculate all types of energy present.		
I can describe and calculate kinetic energy		
I can describe and calculate gravitational potential energy		
I can explain the implications of the conservation of energy		
I can show that the TOTAL energy in a closed system is always the same		
I can interpret a scenario and set up an equality based on the energies present at different locations		
I can use the conservation of energy to solve for an unknown energy or variable in a problem		

2 – Work and Power

I can define and calculate the property of work		
I can identify situations where there is motion but no work being done		
I can calculate work when the force is at an angle to the direction of the motion		
I can equate work done on a system to the change in energy of an open system.		
I can use the work-energy theorem to solve for an unknown		
I can calculate power from work or velocity		

3 - Elastic Potential

I can derive a 'Joule' and 'Watt' from the fundamental units kg, m, and s.		
I can use Hooke's Law to calculate the elastic force at a given displacement		
I can use area under the curve to calculate the work of a variable force		
I can describe and calculate elastic potential energy		

4 – Conservation of Momentum

I can define and calculate momentum		
I can calculate "before" and "after" momentums for multiple objects		
I can use the conservation of momentum to solve for missing variables in linear collisions		
I can describe the process required for explosion, hit and bounce, and hit and stick scenarios		
I can describe the difference between elastic and non-elastic collisions		
I can describe how energy is not always conserved within a system		
I can calculate the amount of energy retained in a non-elastic collision		

5 – Momentum and Impulse

I can describe the meaning of impulse and how it is related to momentum change			
I can use impulse and momentum to solve for an unknown in a collision problem			
I can conceptually describe how to decrease the force experienced in a collision			
I can determine the impulse of a collision from a force vs time graph			

Energy & Momentum

Shelving Guide

	Variable Symbol	Unit
Work		
Power		
Kinetic Energy		
Elastic Potential Energy		
Gravitational Potential Energy		
Spring Constant		
Spring Stretch		

Data Booklet Equations:

 $W = Fs \cos\theta$

$$E_k = \frac{1}{2}mv^2$$

$$E_p = \frac{1}{2}k\Delta x^2$$

$$\Delta E_p = mg\Delta h$$

$$power = Fv$$

Types of Energy

Kinetic Energy	Elastic Potential Energy	Gravitational Potential Energy

Conservation of Energy

		_				
<i>۱۸/</i>	α rl	/_En	erav	Th	00	$r \Delta m$
v v	OI I		ieiuv			

Calculating Work

Constant force at an angle:	$F \leftarrow F \cos \theta$
Varying Force:	Displacement (m)

Examples of no work being done for an object in motion:

Calculating Power

In terms of work and time:	In terms of force and velocity:

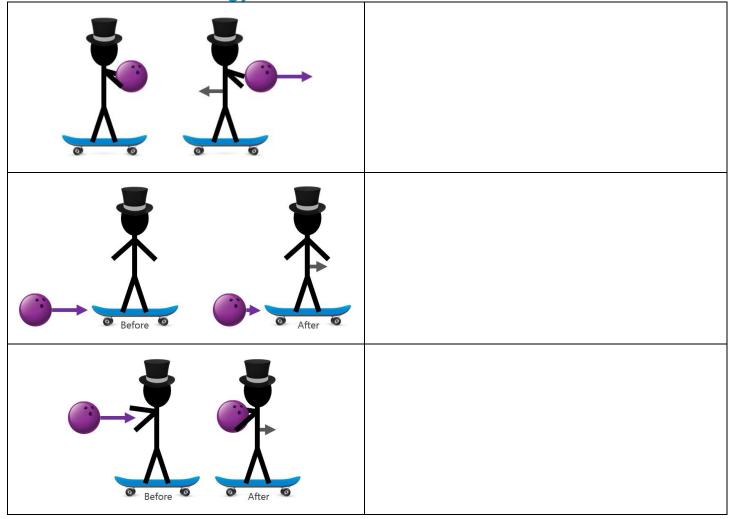
Units

	Standard Unit	From Equation	Fundamental SI Units
Work			
Power			

Momentum

	Variable Symbol	Unit
Momentum		
Mass		
Velocity		
Time		
Kinetic Energy		
Impulse	Impulse	

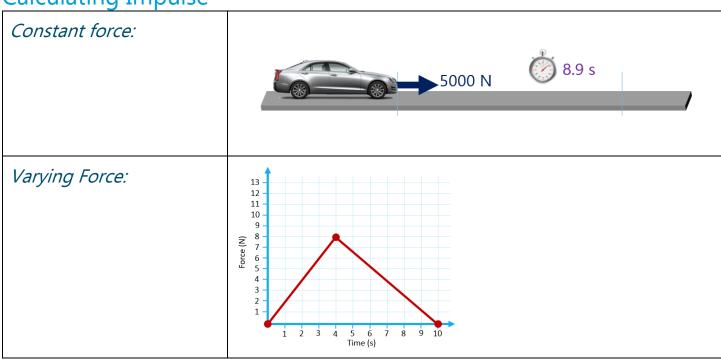
Data Booklet Equations:


$$p = mv$$

$$F = \frac{\Delta p}{\Delta t}$$

$$E_K = \frac{p^2}{2m}$$

Impulse =
$$F\Delta t = \Delta p$$


Conservation of Energy Problems

Types of Collisions

Elastic	
Inelastic	

Calculating Impulse

Impulse-Momentum Equation

Collision Safety

Explain (using impulse, force, and time) how to decrease the force acting on an object undergoing a collision: