Thermal Energy Transfer & Black Body Radiation

IB PHYSICS | ENERGY PRODUCTION

Heat Transfer

There are 3 primary ways that heat is transferred:

- Conduction
- Convection
- Radiation

Conduction

Conduction occurs between objects in direct <u>Contact</u>

Conduction

Why does this frying pan have a plastic handle?

Plastic has a high specific heat and doesn't conduct heat very quickly

Convection

Convection occurs when fluids (liquids or gases) move around due to temperature differences

Hot Air rises Cold Air sinks

Where should I roast my marshmallow?

Convection

CONVECTION CURRENT & WIND

Why does hot air rise?

High Temperature High Volume

High Volume Same Mass Lower Density

Convection

Radiation

Radiation is energy that is transferred as waves such as visible light and infrared

Radiation can travel through <u>a vacuum</u>

Label Me

Emissivity

What color car heats up the most in the sun?

Black – Absorbs more light

Black Body Radiator

A black body radiator is an object that is perfectly opaque and absorbs all energy

Conceptual Black Body

Emissivity

Stefan-Boltzmann Law

Try This

A star has a radius of 8.3×10^7 m and a surface temperature of 7500°C. Calculate the power it emits.

- e = 1 $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ $A = 4\pi (8.3 \times 10^7)^2 = 8.66 \times 10^{16} \text{ m}^2$ T = 7500 + 273 = 7773 K
- $P = e\sigma AT^{4}$ $P = (1)(5.67 \times 10^{-8})(8.66 \times 10^{16})(7773)^{4}$ $P = 1.79 \times 10^{25} \text{ W}$

Proportionality

How much more heat energy is radiated from a 80°C cup of water than from a 20°C cup of water?

$$P = e\sigma AT^4$$

*Careful! Temperature must be converted into Kelvin

 $T_1 = 80 + 273 = 353 \text{ K}$ $T_2 = 20 + 273 = 293 \text{ K}$

e, σ, and A are all the same before and after...

 $\frac{P_1}{P_2} = \frac{\cancel{e} \cancel{A} T_1^4}{\cancel{e} \cancel{A} T_2^4} = \frac{353^4}{293^4} = 2.1 \text{ times more}$

Radiated Energy

Wavelength of radiation in nm

When a black body radiator is heated up, it emits a range of different wavelengths

Glowing Hot

Wien's Displacement Law

*Note: This assumes perfect blackbody radiation

 $\lambda_{\max}(\text{metres}) = \frac{2.90 \times 10^{-3}}{\text{T (kelvin)}}$

At what wavelength is the emitted radiation of the Sun maximized if it has a surface temperature of 5780 K?

$$\lambda = \frac{2.90 \times 10^{-3}}{5780} = 5.02 \times 10^{-7} \text{m} = 502 \text{ nm}$$

What is the most prevalent color of sunlight?

Green

Sample IB Question

Two black bodies X and Y are at different temperatures. The temperature of body Y is higher than that of body X. Which of the following shows the black body spectra for the two bodies?

Takeaways from Today

Know the difference between:

- Conduction
- Convection
- Radiation

Black Body Radiators Emissivity Stefan-Boltzmann Law $P = e\sigma AT^4$

Wien's Displacement Law

 $\lambda_{\max}(\text{metres}) = \frac{2.90 \times 10^{-3}}{\text{T (kelvin)}}$