Thermal Energy Transfer & Black Body Radiation

IB PHYSICS | ENERGY PRODUCTION

Heat Transfer

There are 3 primary ways that heat is transferred:

Conduction

Conduction occurs between objects in direct _

Conduction

Why does this frying pan have a plastic handle?

Convection

Convection occurs when fluids (liquids or gases) move around due to temperature differences

Convection

CONVECTION CURRENT & WIND

Why does hot air rise?

Convection

Radiation

Radiation is energy that is transferred as waves such as visible light and infrared

Radiation can travel through

Label Me

Emissivity

What color car heats up the most in the sun?

Black Body Radiator

A black body radiator is an object that is perfectly opaque and absorbs all energy

Conceptual Black Body

Emissivity

Stefan-Boltzmann Law

$$P = e\sigma AT^4$$

Emissivity	е	power radiated by a surface power radiated from a black body of the same temperature and area		
Stefan-Boltzmann Constant			σ	5.67 × 10 ⁻⁸ W m ⁻² K ⁻⁴

Try This

A star has a radius of 8.3×10^7 m and a surface temperature of 7500°C. Calculate the power it emits.

Proportionality

How much more heat energy is radiated from an 80°C cup of water than from a 20°C cup of water?

 $P = e\sigma AT^4$

*Careful! Temperature must be converted into Kelvin

Radiated Energy

Wavelength of radiation in nm

When a black body radiator is heated up, it emits a range of different wavelengths

Glowing Hot

Wien's Displacement Law

*Note: This assumes perfect blackbody radiation

 $\lambda_{\max}(\text{metres}) = \frac{2.90 \times 10^{-3}}{\text{T (kelvin)}}$

At what wavelength is the emitted radiation of the Sun maximized if it has a surface temperature of 5780 K?

What is the most prevalent color of sunlight?

Sample IB Question

Two black bodies X and Y are at different temperatures. The temperature of body Y is higher than that of body X. Which of the following shows the black body spectra for the two bodies?

Takeaways from Today

Know the difference between:

- Conduction
- Convection
- Radiation

Black Body Radiators Emissivity Stefan-Boltzmann Law $P = e\sigma AT^4$

Wien's Displacement Law

 $\lambda_{\max}(\text{metres}) = \frac{2.90 \times 10^{-3}}{\text{T (kelvin)}}$