Radiation from the Sun

IB PHYSICS | ENERGY PRODUCTION

Intensity

$$Intensity = \frac{Power}{A}$$

$Units = \frac{W}{m^2} = Wm^{-2}$

Intensity

Calculate the intensity of the Sun's radiation arriving to Earth Sun's Power = 3.84×10^{26} W Earth's Distance from Sun = 150×10^{6} km

$$I = 1358 \,\mathrm{Wm^{-2}}$$

Solar Constant

The average intensity falling on an area above the earth's atmosphere perpendicular to the direction traveled by the radiation

$S = 1360 \text{ W m}^{-2} = 1.36 \times 10^3 \text{ W m}^{-2}$

Quantity	Symbol	Approximate value
Elementary charge	е	$1.60 \times 10^{-19} \mathrm{C}$
Electron rest mass	m _e	$9.110 \times 10^{-31} \mathrm{kg} = 0.000549 \mathrm{u} = 0.511 \mathrm{MeV} \mathrm{c}^{-2}$
Proton rest mass	$m_{ m p}$	$1.673 \times 10^{-27} \mathrm{kg}$ =1.007276 u = 938 MeV c ⁻²
Neutron rest mass	$m_{ m n}$	1.675×10^{-27} kg = 1.008665 u = 940 MeV c ⁻²
Unified atomic mass unit	u	$1.661 \times 10^{-27} \mathrm{kg} = 931.5 \mathrm{MeV} \mathrm{c}^{-2}$
Solar constant	S	$1.36 \times 10^{3} \mathrm{W m^{-2}}$
Fermi radius	R ₀	$1.20 \times 10^{-15} \mathrm{m}$

Average Solar Intensity on Earth

Earth's Radius = 6.37×10^6 m

Area of sun power captured:

arth's Radius =
$$6.37 \times 10^6$$
 m
ea of sun power captured:
 $\pi r^2 = \pi (6.37 \times 10^6)^2 =$
1.27 × 10¹⁴ m²

Total sun power captured:

$$1.27 \times 10^{14} \text{ m}^{2} \times \frac{1360 \text{ W}}{1 \text{ m}^{2}} =$$

$$1.7 \times 10^{17} \text{ W}$$
Average spread out across Earth's surface:
$$\frac{P}{A_{sphere}} = \frac{1.7 \times 10^{17} \text{ W}}{4\pi (6.37 \times 10^{6})^{2}} =$$

$$340 \text{ W m}^{2}$$
Total Power Received by the Earth
$$1.7 \times 10^{17} \text{ W}$$
Average Solar Intensity on Earth
$$340 \text{ W m}^{2}$$

Albedo vs. Emissivity

Albedo

power scattered by a body

incident power

	•		• •
r.m	155	'1V	1TV
	100		rey

е

power radiated by a surface power radiated from a black body

% Reflected

% Absorbed

Albedo vs. Emissivity

Albedo $\frac{60}{80} = 0.75$

Emissivity $\frac{20}{80} = 0.25$

Albedo of Earth

$Albedo = \frac{102}{340} = 0.3$

Albedo of Earth

Highest Albedo?

0.66 Snow

Lowest Albedo?

0.07 Ocean

Surface	Albedo ^a	
	Summer	Winter
Mixed farming, tall grass	0.16	0.18
Tall/medium grassland, evergreen shrubland	0.20	0.21
Short, grassland, meadow and shrubland	0.21	0.20
Evergreen forest (needle leaved)	0.12	0.13
Mixed deciduous, evergreen forest	0.16	0.16
Deciduous forest	0.17	0.18
Tropical evergreen broadleaved forest	0.12	0.15
Medium/tall grassland, woodland	0.15	0.18
Desert	0.36	0.36
Tundra	0.17	0.17
Snow	0.66	0.66
Sea ice	0.62	0.62
Ocean	0.07	0.07

Data taken from Briegleb et al. (1986).

Albedo of Earth

April, 2002, Terra satellite, NASA

Adjusting our Albedo

BUREAU OF STREET SERVICES

Los Angeles paints streets white to stay cool

By David Shultz | Sep. 7, 2017 , 5:00 PM

Thermal Equilibrium

In order to maintain a constant global temperature, the Earth must emit the same amount of energy that it absorbs

Greenhouse Effect

If there was no atmosphere, the earth would experience a net loss of energy and reach equilibrium at an average temperature about 30°C colder than it is currently.

Role of the Atmosphere

More on this later...