# **Energy Production** IB Physics Content Guide

# **Big Ideas**

- Most energy sources can be traced back the sun, our ultimate primary source
- No energy source can be converted to electricity with 100% efficiency
- All energy sources have advantages and drawbacks and it important to understand the complete picture
- Every object with a temperature above 0 K emits thermal radiation
- Radiation intensity is related to separation distance by the inverse square law (similar to force fields)
- The Earth's climate relies on a delicate thermal energy balance where total energy in equals total energy out •

# **Content Objectives**

### 1 – Energy Sources Overview

| I can list the top 6 most common sources in the global energy supply and general % of total  |  |  |  |
|----------------------------------------------------------------------------------------------|--|--|--|
| I can distinguish between primary and secondary energy sources                               |  |  |  |
| I can define power as a rate of energy usage in terms of watts                               |  |  |  |
| I can calculate the efficiency as the percentage of useful energy of the total               |  |  |  |
| I can interpret energy flow from a Sankey Diagram                                            |  |  |  |
| I can define specific energy and energy density with proper units                            |  |  |  |
| I can use specific energy to calculate the amount of fuel needed for a given amount of power |  |  |  |

### 2- Nuclear Power

| I can describe the chain reaction that occurs to support a self-sustaining fission reactor       |  |  |  |
|--------------------------------------------------------------------------------------------------|--|--|--|
| I can describe the concentration of U-235 as a sample is enriched into fuel-grade uranium        |  |  |  |
| I can outline the process of enriching uranium                                                   |  |  |  |
| I can explain how a nuclear reactor transforms the energy of a fission reaction into electricity |  |  |  |
| I can describe the role of the moderator and control rods in a nuclear reactor                   |  |  |  |
| I can discuss the challenges of disposing of nuclear waste                                       |  |  |  |

### 3 – The Renewables

| I can list examples of energy sources that are considered renewable                        |  |  |
|--------------------------------------------------------------------------------------------|--|--|
| I can list examples of energy sources that are known carbon dioxide emitters               |  |  |
| I can calculate the power produced by a wind turbine                                       |  |  |
| I can compare the different styles of solar power and what each is used for                |  |  |
| I can calculate the power from a solar panel from the panel area and solar intensity       |  |  |
| I can describe the factors that affect the solar intensity in different locations on Earth |  |  |
| I can outline the operation of a hydropower generator                                      |  |  |
| I can explain how a hydropower plant can incorporate pumped storage to store energy        |  |  |
| I can list challenges that are facing a future of renewable energy                         |  |  |

### 4 – Thermal Energy Transfer

| I can provide examples of conduction, convection, and radiation                            |  |  |  |
|--------------------------------------------------------------------------------------------|--|--|--|
| I can define black-body radiation in terms of absorption and emission of light             |  |  |  |
| I can describe an object based on its emissivity                                           |  |  |  |
| I can calculate the power emitted by a black body radiation using the Stefan-Boltzmann Law |  |  |  |
| I can describe the shape of the emission spectra in terms of radiation wavelength          |  |  |  |
| I can mathematically relate peak wavelength and temperature using Wien's displacement law  |  |  |  |

### 5 – Radiation from the Sun

| I can define intensity with proper units                                                        |  |  |  |
|-------------------------------------------------------------------------------------------------|--|--|--|
| I can describe how intensity changes according to the surface area of a sphere                  |  |  |  |
| I can derive the Solar Constant from the sun's power and distance from earth                    |  |  |  |
| I can calculate the average solar intensity on earth from the solar constant and earth's radius |  |  |  |
| I can compare the properties of albedo and emissivity                                           |  |  |  |
| I can list the gases that have the largest impact on the greenhouse effect                      |  |  |  |

### 6 – Climate Change

| I can describe the greenhouse effect as absorption and re-emission of thermal energy           |  |  |  |
|------------------------------------------------------------------------------------------------|--|--|--|
| I can describe the concept of thermal equilibrium and how it pertains to earth                 |  |  |  |
| I can recognize trends in the climate model based on different factors                         |  |  |  |
| I can describe the long term and seasonal trends in the carbon dioxide concentration           |  |  |  |
| I can list examples of positive and negative feedback loops in terms of the climate discussion |  |  |  |
| I can engage in an evidence-based conversation about climate change                            |  |  |  |

# **Energy Production**

# Shelving Guide

# Global Energy Usage

| Rank | Energy Source | %    | - 6 |
|------|---------------|------|-----|
| 1    |               | 31%  | 5   |
| 2    |               | 27%  | 4 1 |
| 3    |               | 23%  |     |
| 4    |               | 9%   | 3   |
| 5    |               | 5%   | 2   |
| 6    |               | 2.5% |     |

## Efficiency



### **Energy Density**

|                 | Definition | Units |
|-----------------|------------|-------|
| Specific Energy |            |       |
| Energy Density  |            |       |

### Primary and Secondary Sources

| Primary Energy Sources | Secondary Energy Sources |
|------------------------|--------------------------|
|                        |                          |

## Nuclear Power

|         | Describe | Examples | Challenges |
|---------|----------|----------|------------|
| Fission |          |          |            |
| Fusion  |          |          |            |

|               | % of U-235 | Why is the concentration of U-235 important? |
|---------------|------------|----------------------------------------------|
| Uranium Ore   |            |                                              |
| Fuel-Grade    |            | What is done with the nuclear waste?         |
| Weapons-Grade |            |                                              |

| Moderator | Control Rods |
|-----------|--------------|
|           |              |

# Renewable Energy

|                      | Variable Symbol | Unit | Data Booklet Equations:              |
|----------------------|-----------------|------|--------------------------------------|
| Power                |                 |      | 1<br>                                |
| Cross-Sectional Area |                 |      | Power = $\frac{1}{2}A\rho v^{\circ}$ |
| Air Density          |                 |      | A2                                   |
| Air Speed            |                 |      | $A = \pi r^{-1}$                     |

| Photovoltaic Cells | Solar Concentrator | Solar Heating Panel |
|--------------------|--------------------|---------------------|
|                    |                    |                     |
|                    |                    |                     |
|                    |                    |                     |

|                          | Biomass | Coal | Geothermal | Hydropower | Natural Gas | Nuclear | Petroleum | Solar | Wind |
|--------------------------|---------|------|------------|------------|-------------|---------|-----------|-------|------|
| Renewable                |         |      |            |            |             |         |           |       |      |
| Produces CO <sub>2</sub> |         |      |            |            |             |         |           |       |      |

# Thermal Energy Transfer

| Conduction | Convection | Radiation |
|------------|------------|-----------|
|            |            |           |
|            |            |           |

|            | Emissivity | Black Body Radiation | Visible                                    |
|------------|------------|----------------------|--------------------------------------------|
| Sun        |            |                      | тооок<br>6000к<br>5000к                    |
| Earth      |            |                      | 9000K<br>3000K                             |
| Black-Body |            |                      | 500 1000 1500 2000 nm<br>Wavelength λ (nm) |

| Power Emissivity | Variable Symbol | Unit |
|------------------|-----------------|------|
| Power            |                 |      |
| Emissivity       |                 |      |
| Surface Area     |                 |      |
| Temperature      |                 |      |
| Max Wavelength   |                 |      |

Data Booklet Equations:

$$P = e\sigma AT^4$$
$$\lambda_{max} = \frac{2.90 \times 10^{-3}}{T}$$

$$\sigma = 5.67 \times 10^{-8} \,\mathrm{W} \,\mathrm{m}^{-2} \,\mathrm{K}^{-4}$$

# Solar Radiation and Climate Change

| Intensity | Variable Symbol | Unit |
|-----------|-----------------|------|
| Intensity |                 |      |
| Power     |                 |      |
| Area      |                 |      |

Data Booklet Equations:

$$I = \frac{\text{power}}{A}$$

$$A_{sphere} = 4\pi r^2$$

| Greenhouse Gases | Positive Feedback Loop | Negative Feedback Loop |
|------------------|------------------------|------------------------|
|                  |                        |                        |
|                  |                        |                        |
|                  |                        |                        |