Static Electricity

IB PHYSICS | FORCE FIELDS

PhET Simulation

Click here for Simulation

What happens when you rub the balloon on the sweater?

Charge on an Atom

The protons and neutrons are buried deep in the nucleus and cannot easily be touched

electrons orbiting the nucleus are easily lost or gained

How do objects become charged?

Friction

Contact

Induction

What happens when you rub John Travoltage’s foot on the rug?

How do objects become charged?

Friction

Contact

Induction

How do objects become charged?

Friction

Contact

Induction

What happens when you bring the balloon over to the wall?

How do objects become charged?

Friction
 Contact

Induction

What is the charge of this object?

How do objects become charged?

Friction

Contact

Induction

Charging an Aluminum Pie Plate by Induction

Use your knowledge responsibly

Late at night and without permission, Reuben would often enter the nursery and conduct experiments in static electricity.

Charge Interactions

$+$

$+$

Opposite Charges
Like Charges

Which one has more force?

Which charged pair has larger electrostatic forces acting?

Which one has more force?

Which charged pair has larger electrostatic forces acting?

Coulomb's Law

$F=k \frac{q_{1} q_{2}}{r^{2}}$

The force of attraction or repulsion between two point charges is directly proportional to the product of the two charges and inversely proportional to the square of the distance between them.

Symbol	Unit	
Electrostatic Force		
Object 1 Charge		
Object 2 Charge		
Separation Distance		

Coulomb's Constant

$F=k \frac{q_{1} q_{2}}{r^{2}}$

$$
k=8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}
$$

Use unit analysis to prove the units of k :

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields		Sub-topic 5.2 - Heating effect of electric currents		
$\begin{aligned} & I=\frac{\Delta q}{\Delta t} \\ & F=k \frac{q_{1} q_{2}}{r^{2}} \end{aligned}$ 1		Kirchhoff's circuit laws:$\begin{aligned} & \Sigma V=0 \text { (loop) } \\ & \Sigma I=0 \text { (junction) } \\ & V \end{aligned}$		
$k=\frac{1}{4 \pi \varepsilon_{0}}$	Quantity		Symbol	Approximate value
$V=\frac{W}{q}$	Acceleration of free fall (Earth's surface)		g	$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
	Gravitational constant		G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$E=\frac{F}{q}$	Avogadro's constant		$N_{\text {A }}$	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$I=n A v q$	Gas constant		R	$8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
	Boltzmann's constant		$k_{\text {B }}$	$1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
	Stefan-Boltzmann constant		σ	$5.67 \times 10^{-8} \mathrm{Wm} \mathrm{m}^{-2} \mathrm{~K}^{-4}$
Sub-topic 5.3 - Electric cells			k	$8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}$
$\varepsilon=I(R+r)$	Permittivity of free space		ε_{0}	$8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
	Permeability of free space		μ_{0}	$4 \pi \times 10^{-7} \mathrm{Tm} \mathrm{A}^{-1}$
	Speed of light in vacuum		c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$

Conceptual Math

What is the repulsion force on the positive charge below?

Conceptual Math

What is the repulsion force on the positive charge below?

Conceptual Math

Which pair has the greater electrostatic force?

