Electrostatic and Gravitational Force

IB PHYSICS | FORCE FIELDS

Review of Charges

$+\rightarrow-\infty$

$+$

Opposite Charges Attract

Like Charges Repel

Coulomb's Law

$F=k \frac{q_{1} q_{2}}{r^{2}}$

The force of attraction or repulsion between two point charges is directly proportional to the product of the two charges and inversely proportional to the square of the distance between them.

Symbol Unit		
Electrostatic Force	F	$[\mathrm{~N}]$
Object 1 Charge	q_{1}	$[\mathrm{C}]$
Object 2 Charge	q_{2}	$[\mathrm{C}]$
Separation Distance	r	$[\mathrm{~m}]$

IB Physics Data Booklet

Sign is important!

$F=k \frac{q_{1} q_{2}}{r^{2}}$

$$
k=8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}
$$

$+\mathrm{F} \rightarrow$ Repel $(+)(+)$ or $(-)(-)$
$-\mathrm{F} \rightarrow \operatorname{Attract}(+)(-)$ or $(-)(+)$

Quantifying Charge

The total charge in Coulombs can be related to the number of electrons

Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$
Electron rest mass	m_{e}	$9.110 \times 10^{-31} \mathrm{~kg}=0.000549 \mathrm{u}=0.511 \mathrm{MeV} \mathrm{c}^{-2}$
Proton rest mass	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}=1.007276 \mathrm{u}=938 \mathrm{MeV} \mathrm{c}^{-2}$
Neutron rest mass	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}=1.008665 \mathrm{u}=940 \mathrm{MeV} \mathrm{c}^{-2}$
Unified atomic mass unit	u	$1.661 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV} \mathrm{c}^{-2}$

Quantifying Charge

The coulomb was selected to use with electric currents which makes it a very large unit for static electricity. Get your metric prefixes ready

Conversion Check

$7 \mu \mathrm{C} \rightarrow \mathrm{C}$

$$
7 \times 10^{-6} \mathrm{C}
$$

kilo	k	10^{3}
hecto	heca	h
deci	d	10^{2}
centi	c	10^{1}
milli	m	10^{-1}
micro	μ	10^{-2}
nano	n	10^{-3}

Try This

A small cork with an excess charge of $+7.0 \mu \mathrm{C}$ is placed 14 cm from another cork, which carries a charge of $-3.2 \mu \mathrm{C}$. What is the magnitude of the electric force between the corks?

$$
F=k \frac{q_{1} q_{2}}{r^{2}}=\left(8.99 \times 10^{9}\right) \frac{\left(7 \times 10^{-6}\right)\left(-3.2 \times 10^{-6}\right)}{(0.14)^{2}}
$$

$F=-10.3 \mathrm{~N}$

$$
F=k \frac{q_{1} q_{2}}{r^{2}} \quad \mathrm{k}=8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2} \quad \text { Elementary Charge }=1.60 \times 10^{-19} \mathrm{C}
$$

How many electrons??

A small cork with an excess charge of $+7.0 \mu \mathrm{C}$ is placed 14 cm from another cork, which carries a charge of $-3.2 \mu \mathrm{C}$. What is the magnitude of the electric force between the corks?

How many excess electrons
on the second cork??
$-3.2 \times 10^{-6} \mathrm{C} \times \frac{1 \text { electron }}{-1.60 \times 10^{-19} \mathrm{C}}=2 \times 10^{13}$ electrons
$F=k \frac{q_{1} q_{2}}{r^{2}}$

$$
\mathrm{k}=8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2} \quad \text { Elementary Charge }=1.60 \times 10^{-19} \mathrm{C}
$$

Gravity

What is Gravity?
Idea \#1: A downward force that stops you from flying away

Universal Law of Gravitation

Mm
 $$
F=G \frac{r^{2}}{r^{2}}
$$

The force of attraction between bodies with mass is directly proportional to the product of the two masses and inversely proportional to the square of the distance between them.

Symbol	Unit	
Gravitational Force	F	$[\mathrm{~N}]$
Object 1 Mass	M	$[\mathrm{~kg}]$
Object 2 Mass	m	$[\mathrm{~kg}]$
Separation Distance	r	$[\mathrm{~m}]$

Universal Law of Gravitation

$$
F=G \frac{M m}{r^{2}}
$$

G \rightarrow Universal Gravitational Constant

$$
G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}
$$

IB Physics Data Booklet

Sub-topic 6.2 - Newton's law of gravitation

$F=G \frac{M m}{r^{2}}$ *Universal Law of Gravitation
$g=\frac{F}{m}$
$g=G \frac{M}{r^{2}}$

Fundamental constants

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$

Gravity - Equal and Opposite

The force on the skydiver is the same as the force on the earth but the earth's huge mass means that there is hardly any acceleration

Measuring the proper distance

Technically Newton's Law of Gravitation defines how to calculate the gravitational force between two point masses

Fortunately, Newton's shell theorem states that:

"A spherically symmetric shell of mass M acts as if all of its mass is located at its center."

Try This

Determine the force of gravitational attraction between the earth ($\mathrm{m}=5.98 \mathrm{x}$ $10^{24} \mathrm{~kg}$) and a $70-\mathrm{kg}$ physics student if the student is in an airplane at 40000 feet above earth's surface. This would place the student a distance of $6.39 \times 10^{6} \mathrm{~m}$ from earth's center.

$$
F=G \frac{M m}{r^{2}}=\left(6.67 \times 10^{-11}\right) \frac{\left(5.98 \times 10^{24}\right)(70)}{\left(6.39 \times 10^{6}\right)^{2}}
$$

$F=684 \mathrm{~N}$

Comparison

Electrostatic Force

$$
F=k \frac{q_{1} q_{2}}{r^{2}}
$$

$k \rightarrow$ Coulomb Constant $q_{1}, q_{2} \rightarrow$ Charges [C]

Gravitational Force

$$
F=G \frac{M m}{r^{2}}
$$

$G \rightarrow$ Gravitational Constant
$M, m \rightarrow$ Masses $[\mathrm{kg}]$

Permittivity

Coulomb's Constant is sometimes expanded to this form:

$$
k=\frac{1}{4 \pi \varepsilon_{0}}
$$

$\varepsilon_{0} \rightarrow$ Permittivity of Free Space (vacuum) $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$

*Solving for k will get Coulomb's Constant for a vacuum

IB Physics Data Booklet

Permittivity

Permittivity changes relative to the substance

Relative Permittivity

IB might ask you about this: the higher the relative permittivity, the harder it is for electrostatic forces to travel over a distance...

Relative Permittivities

Free Space (a vacuum)	1
Dry Air	1.0005
Paper	4
Concrete	4
Rubber	6

