Force Fields

IB PHYSICS | FORCE FIELDS

Warm Up

What is the force of gravity between the earth and the moon?

$$
r=3.8 \times 10^{8} \mathrm{~m}
$$

$$
\begin{aligned}
& m=6 \times 10^{24} \mathrm{~kg} \\
& F=\left(6.67 \times 10^{-11}\right) \frac{\left(6 \times 10^{24}\right)\left(7.4 \times 10^{22}\right)}{\left(3.8 \times 10^{8}\right)^{2}}
\end{aligned}
$$

$$
\mathrm{m}=7.4 \times 10^{22} \mathrm{~kg}
$$

$$
F=G \frac{M m}{r^{2}}
$$

$$
F=2.05 \times 10^{20} \mathrm{~N}
$$

$$
\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}
$$

Review of Circular Motion

How fast (in m / s) is the moon moving?

$$
r=3.8 \times 10^{8} \mathrm{~m}
$$

$$
\mathrm{m}=6 \times 10^{24} \mathrm{~kg}
$$

$$
F=2.05 \times 10^{20} \mathrm{~N}
$$

$$
\mathrm{m}=7.4 \times 10^{22} \mathrm{~kg}
$$

$$
2.05 \times 10^{20}=\frac{\left(7.4 \times 10^{22}\right) v^{2}}{\left(3.8 \times 10^{8}\right)}
$$

$$
F=\frac{m v^{2}}{r}=m \omega^{2} r
$$

$$
v=1026 \mathrm{~m} \mathrm{~s}^{-1}
$$

Force Fields

Vector field that describes the force that would act on a particle at various positions

	Electric Field	Gravitational Field
$\overline{\text { oे }}$	E	g
$\frac{\mathrm{E}}{\mathrm{E}}$	N	C
$\mathrm{C}=\mathrm{N} \mathrm{C}^{-1}$	$\frac{\mathrm{~N}}{\mathrm{~kg}}=\mathrm{N} \mathrm{kg}^{-1}$	

Electric Fields

Electric Fields point in the direction that a positive charge would travel

Try This

Label these charges as positive (+) or negative (-)

Try This

Predict what the field lines will look like:

Gravity as a field

Gravity as a field

Gravity as a field

- The gravitational field distorts the space around the mass that is causing it so that any other mass placed at any position in the field will "know" how to respond immediately.
- Bigger masses "curve" the rubber sheet more than smaller masses.

Gravity as a field

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields

I	$=\frac{\Delta q}{\Delta t}$
F	$=k \frac{q_{1} q_{2}}{r^{2}}$
k	$=\frac{1}{4 \pi \varepsilon_{0}}$
V	$=\frac{W}{q}$
E	$=\frac{F}{q}$
I	$=n A v q$

Sub-topic 6.2 - Newton's law of gravitation

$$
F=G \frac{M m}{r^{2}}
$$

$$
g=\frac{F}{m}
$$

$$
g=G \frac{M}{r^{2}}
$$

Sub-topic 5.3 - Electric cells
$\varepsilon=I(R+r)$

Remember g?

$\mathrm{g}=9.81 \mathrm{~m} \mathrm{~s}^{-2}$

g representing acceleration is not the whole story... $\mathrm{g} \rightarrow$ Gravitational Field Strength

$$
g=\frac{\mathrm{N}}{\mathrm{~kg}}=\frac{\times \mathrm{m} \mathrm{~s}^{-2}}{\mathrm{Kg}}=\mathrm{m} \mathrm{~s}^{-2}
$$

Wait, does that mean g changes?

$400 \mathrm{~km}+6370 \mathrm{~km}=6770 \mathrm{~km}$

Using g

$$
=2,000,000 \mathrm{~kg}
$$

What is the force of gravity for each position?

$$
\begin{array}{ll}
F=(75 \mathrm{~kg})\left(5 \mathrm{Nkg}^{-1}\right) & F=(2,000,000 \mathrm{~kg})\left(5 \mathrm{~N} \mathrm{~kg}^{-1}\right) \\
F=\mathbf{3 7 5} \mathbf{N} & F=\mathbf{1 0}, \mathbf{0 0 0}, \mathbf{0 0 0} \mathbf{N}
\end{array}
$$

$$
F=(75 \mathrm{~kg})\left(8 \mathrm{Nkg}^{-1}\right) \quad F=\left(2,000,000 \mathrm{~kg}^{2}\right)\left(8 \mathrm{Nkg}^{-1}\right)
$$

$$
F=600 N \quad F=16,000,000 N
$$

Try This

What is the electric field strength if a particle with a charge of $+6.3 \mu \mathrm{C}$ experiences a force of 0.0025 N ?

$$
E=\frac{F}{q}=\frac{0.0025 \mathrm{~N}}{6.3 \times 10^{-6} \mathrm{C}}
$$

$$
E=397 \mathrm{~N} \mathrm{C}^{-1}
$$

Think about this...

Two isolated point charges, $-7 \mu \mathrm{C}$ and $+2 \mu \mathrm{C}$, are at a fixed distance apart. At which point is it possible for the electric field strength to be zero?

Try this

What is the gravitational field strength halfway between the centers of the earth and the moon?

$$
r=3.8 \times 10^{8} \mathrm{~m} / 2=\mathbf{1 . 9} \times \mathbf{1 0}^{\mathbf{8}} \mathbf{~ m}
$$

$$
\begin{aligned}
& \mathrm{m}=6 \times 10^{24} \mathrm{~kg} \\
& g=\left(6.67 \times 10^{-11}\right) \frac{\left(6 \times 10^{24}\right)}{\left(1.9 \times 10^{8}\right)^{2}}=\mathbf{0 . 0 1 1 \mathbf { N k g } ^ { - 1 }} \\
& g=G \frac{M}{r^{2}} \quad G=6.67 \times 10^{-11} \frac{\mathrm{~N} \times \mathrm{m}^{2}}{\mathrm{~kg}^{2}}
\end{aligned}
$$

$$
\mathrm{m}=7.3 \times 10^{22} \mathrm{~kg}
$$

$$
g=\left(6.67 \times 10^{-11}\right) \frac{\left(7.3 \times 10^{22}\right)}{\left(1.9 \times 10^{8}\right)^{2}}=\mathbf{0 . 0 0 0 1 3} \mathbf{N ~ k g}^{-1}
$$

$$
g=0.011-0.00013=
$$

$$
g=0.0109 \mathrm{~N} \mathrm{~kg}^{-1}
$$

Try this

Where would an object experience a

 gravitational field of $0 \mathrm{~N} \mathrm{~kg}^{-1} \longrightarrow G \frac{M_{e}}{r_{e}{ }^{2}}=G \frac{M_{m}}{r_{m}{ }^{2}}$(2) $r=3.8 \times 10^{8} \mathrm{~m} \quad r_{m}=3.8 \times 10^{8}-r_{e}$

$$
\mathrm{m}=7.3 \times 10^{22} \mathrm{~kg}
$$

$$
\begin{aligned}
\mathrm{m}=6 \times 10^{24} \mathrm{~kg} \\
\begin{array}{c}
\text { cancel out G } \\
\text { and }
\end{array} \\
\text { square root everything }
\end{aligned} \quad \begin{array}{r}
\mathrm{k} \frac{M_{e}}{r_{e}^{2}}=\sqrt{\& \frac{M_{m}}{r_{m}^{2}}}
\end{array} \quad \begin{aligned}
& \frac{\sqrt{6 \times 10^{24}}}{r_{e}} \times \frac{\sqrt{7.3 \times 10^{22}}}{\left(3.8 \times 10^{8}-r_{e}\right)} \\
& \\
& \frac{\sqrt{M_{e}}}{r_{e}}=\frac{\sqrt{M_{m}}}{r_{m}}
\end{aligned}
$$

$$
g=G \frac{M}{r^{2}} \quad G=6.67 \times 10^{-11} \frac{\mathrm{~N} \mathrm{\times m}}{\mathrm{~kg}^{2}}
$$

$$
r_{e}=3.42 \times 10^{8} \mathrm{~m}
$$

