Electromagnetic Force

IB PHYSICS | FORCE FIELDS

Remember the Right Hand Rule?

Thumb points in direction of the current

Fingers point in direction of the field lines

Right Hand Rule \#2

Thumb points in direction of the current
Fingers point in direction of the field lines
Palm points in direction of the force

How do you represent a direction that's perpendicular to the paper?

Into the paper
Out of the paper

Right Hand Rule \#2

A current-carrying wire is placed in a magnetic field and the magnetic field exerts a force on the wire

Designing a Motor

When electric current is passed through a magnetic field, you get motion

Motors vs Generators

Electric Motors convert

Electricity
 Motion

Electric Generators convert

Motion

Electricity

Examples

Speakers

Definition of the Ampere

Consider two parallel wires, with current in the same direction. Do they attract or repel??

**One ampere is defined as the current that would cause a force of $2 \times 10^{-7} \mathrm{~N}$ per meter between two long parallel conductors separated by 1 m in a vacuum

Fields

Gravitational Field

$$
g=\frac{F}{m}=\frac{[\mathrm{N}]}{[\mathrm{kg}]}
$$

Magnetic Field

$$
B=\frac{F}{I}=\frac{[\mathrm{N}]}{[\mathrm{A}]}=[\mathrm{T}]
$$

Electric Field

$$
E=\frac{F}{q}=\frac{[\mathrm{N}]}{[\mathrm{C}]}
$$

Magnetic Flux

The magnetic field strength is sometimes referred to as magnetic flux and depends on how perpendicular the current is in relation to the field direction

Max flux

Less flux

No flux given.

Magnetic field Strength

F $B=\overline{I L \sin \theta}$

The force on the wire is proportional to the charge moving perpendicular to the field. Because of these the perpendicular component must be used in the calculation

Fields

$F=B I L \sin \theta$ $I L \sin \theta$

Magnetic force Newtons [N]

B Magnetic field strength Tesla [T]

I Current
Amperes [A]

Length of conductor in uniform magnetic field

Angle between
θ magnetic field and current

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} I & =\frac{\Delta q}{\Delta t} \\ F & =k \frac{q_{1} q_{2}}{r^{2}} \\ k & =\frac{1}{4 \pi \varepsilon_{0}} \\ V & =\frac{W}{q} \\ E & =\frac{F}{q} \\ I & =n A v q \end{aligned}$	Kirchhoff's circuit laws: $\begin{aligned} & \quad \Sigma V=0 \text { (loop) } \\ & \quad \Sigma I=0 \text { (junction) } \\ & R=\frac{V}{I} \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \\ & R_{\text {total }}=R_{1}+R_{2}+\cdots \\ & \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ & \rho=\frac{R A}{L} \end{aligned}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$F=q v B \sin \theta$
	$F=B I L \sin \theta$

Try This...

A current of 3.8 A in a long wire experiences a force of $5.7 \times 10^{-3} \mathrm{~N}$ when it flows through a magnetic field of strength 25 mT . If the length of wire in the field is 10 cm , what is the angle between the field and current?

$F=B I L \sin \theta$

$$
\theta=\sin ^{-1}\left(\frac{F}{B I L}\right)=\sin ^{-1}\left(\frac{\left(5.7 \times 10^{-3}\right)}{\left(25 \times 10^{-3}\right)(3.8)(0.1)}\right)
$$

$$
\begin{aligned}
& F=5.7 \times 10^{-3} \mathrm{~N} \\
& B=25 \mathrm{mT}=25 \times 10^{-3} \mathrm{~T} \\
& I=3.8 \mathrm{~A} \\
& L=10 \mathrm{~cm}=0.1 \mathrm{~m}
\end{aligned}
$$

$\theta=36.87^{\circ}$

Force on a Charged Particle

When there is a magnetic force on a current carrying wire, the force is really on the moving charges inside of the conductor.

Single charged particles can also experience a magnetic force when moving through a magnetic field...

$$
\begin{array}{lr}
F=B I L \sin \theta & \\
F=B\left(\frac{q}{\not r}\right)(v \not t) \sin \theta & \\
F=\frac{L}{t} \\
F=B q v \sin \theta & I=\frac{q}{t}
\end{array}
$$

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} I & =\frac{\Delta q}{\Delta t} \\ F & =k \frac{q_{1} q_{2}}{r^{2}} \\ k & =\frac{1}{4 \pi \varepsilon_{0}} \\ V & =\frac{W}{q} \\ E & =\frac{F}{q} \\ I & =n A v q \end{aligned}$	Kirchhoff's circuit laws: $\begin{aligned} & \quad \Sigma V=0 \text { (loop) } \\ & \quad \Sigma I=0 \text { (junction) } \\ & R=\frac{V}{I} \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \\ & R_{\text {total }}=R_{1}+R_{2}+\cdots \\ & \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ & \rho=\frac{R A}{L} \end{aligned}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$F=q v B \sin \theta$
	$F=B I L \sin \theta$

Try This...

What is the magnetic force acting on a proton $\left(+1.6 \times 10^{-19} \mathrm{C}\right)$ moving at an angle of 32° across a magnetic field of $5.3 \times 10^{-3} \mathrm{~T}$ at a speed of $3.4 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$?

$$
\begin{aligned}
& F=q v B \sin \theta \\
& F=\left(1.6 \times 10^{-19}\right)\left(3.4 \times 10^{5}\right)\left(5.3 \times 10^{-3}\right) \sin 32^{\circ}
\end{aligned}
$$

$$
q=1.6 \times 10^{-19} \mathrm{C}
$$

$$
v=3.4 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
F=1.5 \times 10^{-16} \mathrm{~N}
$$

Particles Moving Across Fields

magnetic field out of screen

