FORCE FIELDS

IB PHYSICS | COMPLETED NOTES

Static Electricity

IB PHYSICS | FORCE FIELDS

PhET Simulation

What happens when you rub the balloon on the sweater?

Electrons transfer from the sweater to the balloon

Click here for Simulation

Charge on an Atom

The protons and neutrons are buried deep in the nucleus and cannot easily be touched

electrons orbiting the nucleus are easily lost or gained

How do objects become charged?

Friction

Contact

Induction

What happens when you rub John Travoltage’s foot on the rug?

The foot gains electrons from rubbing on the carpet and the electrons spread out

How do objects become charged?

Friction

Contact

Induction

Draw in the Electrons

How do objects become charged?

Friction Contact

Induction

What happens when you bring the balloon over to the wall?

The electrons in the wall redistribute and move away from the negative source

How do objects become charged?

Friction

Contact

Induction

What is the charge of this object?

Before

How do objects become charged?

Friction

Contact

Induction

Charging an Aluminum Pie Plate by Induction

Use your knowledge responsibly

Late at night and without permission, Reuben would often enter the nursery and conduct experiments in static electricity.

Charge Interactions

$\rightarrow \rightarrow-$

$+$

Opposite Charges Attract

Like Charges Repel

Which one has more force?

Which charged pair has larger electrostatic forces acting?

smaller distance $=$ greater force

Which one has more force?

Which charged pair has larger electrostatic forces acting?

greater charge $=$ greater force

Coulomb's Law

$F=k \frac{q_{1} q_{2}}{r^{2}}$

The force of attraction or repulsion between two point charges is directly proportional to the product of the two charges and inversely proportional to the square of the distance between them.

Symbol	Unit	
Electrostatic Force	F	$[\mathrm{~N}]$
Object 1 Charge	q_{1}	$[\mathrm{C}]$
Object 2 Charge	q_{2}	$[\mathrm{C}]$
Separation Distance	r	$[\mathrm{~m}]$

Coulomb's Constant

$F=k \frac{q_{1} q_{2}}{r^{2}}$

$k=8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$

Use unit analysis to prove the units of k :

$$
k=\frac{F r^{2}}{q_{1} q_{2}}=\frac{N m^{2}}{C C}=N m^{2} C^{-2}
$$

Solve for k
Plug in units
Simplify

IB Physics Data Booklet

Conceptual Math

What is the repulsion force on the positive charge below?

$$
\begin{aligned}
& F=k \frac{q_{1} q_{2}}{(2 r)^{2}} \\
& F=k \frac{q_{1} q_{2}}{4 r^{2}}
\end{aligned}
$$

Conceptual Math

What is the repulsion force on the positive charge below?

Conceptual Math

Which pair has the greater electrostatic force? Same!

$+2$

Electrostatic and Gravitational Force

IB PHYSICS | FORCE FIELDS

Review of Charges

$+\rightarrow-\infty$

$+$

Opposite Charges Attract

Like Charges Repel

Coulomb's Law

$F=k \frac{q_{1} q_{2}}{r^{2}}$

The force of attraction or repulsion between two point charges is directly proportional to the product of the two charges and inversely proportional to the square of the distance between them.

Symbol Unit		
Electrostatic Force	F	$[\mathrm{~N}]$
Object 1 Charge	q_{1}	$[\mathrm{C}]$
Object 2 Charge	q_{2}	$[\mathrm{C}]$
Separation Distance	r	$[\mathrm{~m}]$

IB Physics Data Booklet

Sign is important!

$F=k \frac{q_{1} q_{2}}{r^{2}}$

$$
k=8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}
$$

$+\mathrm{F} \rightarrow$ Repel $(+)(+)$ or $(-)(-)$
$-\mathrm{F} \rightarrow \operatorname{Attract}(+)(-)$ or $(-)(+)$

Quantifying Charge

The total charge in Coulombs can be related to the number of electrons

Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$
Electron rest mass	m_{e}	$9.110 \times 10^{-31} \mathrm{~kg}=0.000549 \mathrm{u}=0.511 \mathrm{MeV} \mathrm{c}^{-2}$
Proton rest mass	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}=1.007276 \mathrm{u}=938 \mathrm{MeV} \mathrm{c}^{-2}$
Neutron rest mass	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}=1.008665 \mathrm{u}=940 \mathrm{MeV} \mathrm{c}^{-2}$
Unified atomic mass unit	u	$1.661 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV} \mathrm{c}^{-2}$

Quantifying Charge

The coulomb was selected to use with electric currents which makes it a very large unit for static electricity. Get your metric prefixes ready

Conversion Check

$7 \mu \mathrm{C} \rightarrow \mathrm{C}$

$$
7 \times 10^{-6} \mathrm{C}
$$

kilo	k	10^{3}
hecto	heca	h
deci	d	10^{2}
centi	c	10^{1}
milli	m	10^{-1}
micro	μ	10^{-2}
nano	n	10^{-3}

Try This

A small cork with an excess charge of $+7.0 \mu \mathrm{C}$ is placed 14 cm from another cork, which carries a charge of $-3.2 \mu \mathrm{C}$. What is the magnitude of the electric force between the corks?

$$
F=k \frac{q_{1} q_{2}}{r^{2}}=\left(8.99 \times 10^{9}\right) \frac{\left(7 \times 10^{-6}\right)\left(-3.2 \times 10^{-6}\right)}{(0.14)^{2}}
$$

$F=-10.3 \mathrm{~N}$

$$
F=k \frac{q_{1} q_{2}}{r^{2}} \quad \mathrm{k}=8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2} \quad \text { Elementary Charge }=1.60 \times 10^{-19} \mathrm{C}
$$

How many electrons??

A small cork with an excess charge of $+7.0 \mu \mathrm{C}$ is placed 14 cm from another cork, which carries a charge of $-3.2 \mu \mathrm{C}$. What is the magnitude of the electric force between the corks?

How many excess electrons
on the second cork??
$-3.2 \times 10^{-6} \mathrm{C} \times \frac{1 \text { electron }}{-1.60 \times 10^{-19} \mathrm{C}}=2 \times 10^{13}$ electrons
$F=k \frac{q_{1} q_{2}}{r^{2}}$

$$
\mathrm{k}=8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2} \quad \text { Elementary Charge }=1.60 \times 10^{-19} \mathrm{C}
$$

Gravity

What is Gravity?
Idea \#1: A downward force that stops you from flying away

Universal Law of Gravitation

Mm
 $$
F=G \frac{}{r^{2}}
$$

The force of attraction between bodies with mass is directly proportional to the product of the two masses and inversely proportional to the square of the distance between them.

Symbol	Unit	
Gravitational Force	F	$[\mathrm{~N}]$
Object 1 Mass	M	$[\mathrm{~kg}]$
Object 2 Mass	m	$[\mathrm{~kg}]$
Separation Distance	r	$[\mathrm{~m}]$

Universal Law of Gravitation

$$
F=G \frac{M m}{r^{2}}
$$

G \rightarrow Universal Gravitational Constant

$$
G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}
$$

IB Physics Data Booklet

Sub-topic 6.2 - Newton's law of gravitation

$F=G \frac{M m}{r^{2}}$ *Universal Law of Gravitation
$g=\frac{F}{m}$
$g=G \frac{M}{r^{2}}$

Fundamental constants

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$

Gravity - Equal and Opposite

The force on the skydiver is the same as the force on the earth but the earth's huge mass means that there is hardly any acceleration

Measuring the proper distance

Technically Newton's Law of Gravitation defines how to calculate the gravitational force between two point masses

Fortunately, Newton's shell theorem states that:

"A spherically symmetric shell of mass M acts as if all of its mass is located at its center."

Try This

Determine the force of gravitational attraction between the earth ($\mathrm{m}=5.98 \mathrm{x}$ $10^{24} \mathrm{~kg}$) and a $70-\mathrm{kg}$ physics student if the student is in an airplane at 40000 feet above earth's surface. This would place the student a distance of $6.39 \times 10^{6} \mathrm{~m}$ from earth's center.

$$
F=G \frac{M m}{r^{2}}=\left(6.67 \times 10^{-11}\right) \frac{\left(5.98 \times 10^{24}\right)(70)}{\left(6.39 \times 10^{6}\right)^{2}}
$$

$F=684 \mathrm{~N}$

Comparison

Electrostatic Force

$$
F=k \frac{q_{1} q_{2}}{r^{2}}
$$

$k \rightarrow$ Coulomb Constant $q_{1}, q_{2} \rightarrow$ Charges [C]

Gravitational Force

$$
F=G \frac{M m}{r^{2}}
$$

$G \rightarrow$ Gravitational Constant
$M, m \rightarrow$ Masses $[\mathrm{kg}]$

Permittivity

Coulomb's Constant is sometimes expanded to this form:

$$
k=\frac{1}{4 \pi \varepsilon_{0}}
$$

$\varepsilon_{0} \rightarrow$ Permittivity of Free Space (vacuum) $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$

*Solving for k will get Coulomb's Constant for a vacuum

IB Physics Data Booklet

Permittivity

Permittivity changes relative to the substance

Relative Permittivity

IB might ask you about this: the higher the relative permittivity, the harder it is for electrostatic forces to travel over a distance...

Relative Permittivities

Free Space (a vacuum)	1
Dry Air	1.0005
Paper	4
Concrete	4
Rubber	6

Force Fields

IB PHYSICS | FORCE FIELDS

Warm Up

What is the force of gravity between the earth and the moon?

$$
r=3.8 \times 10^{8} \mathrm{~m}
$$

$$
\begin{aligned}
& m=6 \times 10^{24} \mathrm{~kg} \\
& F=\left(6.67 \times 10^{-11}\right) \frac{\left(6 \times 10^{24}\right)\left(7.4 \times 10^{22}\right)}{\left(3.8 \times 10^{8}\right)^{2}}
\end{aligned}
$$

$$
\mathrm{m}=7.4 \times 10^{22} \mathrm{~kg}
$$

$$
F=G \frac{M m}{r^{2}}
$$

$$
F=2.05 \times 10^{20} \mathrm{~N}
$$

$$
\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}
$$

Review of Circular Motion

How fast (in m / s) is the moon moving?

$$
r=3.8 \times 10^{8} \mathrm{~m}
$$

$$
\mathrm{m}=6 \times 10^{24} \mathrm{~kg}
$$

$$
F=2.05 \times 10^{20} \mathrm{~N}
$$

$$
\mathrm{m}=7.4 \times 10^{22} \mathrm{~kg}
$$

$$
2.05 \times 10^{20}=\frac{\left(7.4 \times 10^{22}\right) v^{2}}{\left(3.8 \times 10^{8}\right)}
$$

$$
F=\frac{m v^{2}}{r}=m \omega^{2} r
$$

$$
v=1026 \mathrm{~m} \mathrm{~s}^{-1}
$$

Force Fields

Vector field that describes the force that would act on a particle at various positions

	Electric Field	Gravitational Field
$\overline{\text { oे }}$	E	g
$\frac{\mathrm{E}}{\mathrm{E}}$	N	C
$\mathrm{C}=\mathrm{N} \mathrm{C}^{-1}$	$\frac{\mathrm{~N}}{\mathrm{~kg}}=\mathrm{N} \mathrm{kg}^{-1}$	

Electric Fields

Electric Fields point in the direction that a positive charge would travel

Try This

Label these charges as positive (+) or negative (-)

Try This

Predict what the field lines will look like:

Gravity as a field

Gravity as a field

Gravity as a field

- The gravitational field distorts the space around the mass that is causing it so that any other mass placed at any position in the field will "know" how to respond immediately.
- Bigger masses "curve" the rubber sheet more than smaller masses.

Gravity as a field

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields

I	$=\frac{\Delta q}{\Delta t}$
F	$=k \frac{q_{1} q_{2}}{r^{2}}$
k	$=\frac{1}{4 \pi \varepsilon_{0}}$
V	$=\frac{W}{q}$
E	$=\frac{F}{q}$
I	$=n A v q$

Sub-topic 6.2 - Newton's law of gravitation

$$
F=G \frac{M m}{r^{2}}
$$

$$
g=\frac{F}{m}
$$

$$
g=G \frac{M}{r^{2}}
$$

Sub-topic 5.3 - Electric cells
$\varepsilon=I(R+r)$

Remember g?

$\mathrm{g}=9.81 \mathrm{~m} \mathrm{~s}^{-2}$

g representing acceleration is not the whole story... $\mathrm{g} \rightarrow$ Gravitational Field Strength

$$
g=\frac{\mathrm{N}}{\mathrm{~kg}}=\frac{\times \mathrm{m} \mathrm{~s}^{-2}}{\mathrm{Kg}}=\mathrm{m} \mathrm{~s}^{-2}
$$

Wait, does that mean g changes?

$400 \mathrm{~km}+6370 \mathrm{~km}=6770 \mathrm{~km}$

Using g

$$
=2,000,000 \mathrm{~kg}
$$

What is the force of gravity for each position?

$$
\begin{array}{ll}
F=(75 \mathrm{~kg})\left(5 \mathrm{Nkg}^{-1}\right) & F=(2,000,000 \mathrm{~kg})\left(5 \mathrm{Nkg}^{-1}\right) \\
F=\mathbf{3 7 5} \mathbf{N} & F=\mathbf{1 0}, \mathbf{0 0 0}, \mathbf{0 0 0} \mathbf{N}
\end{array}
$$

$$
F=(75 \mathrm{~kg})\left(8 \mathrm{Nkg}^{-1}\right) \quad F=(2,000,000 \mathrm{~kg})\left(8 \mathrm{Nkg}^{-1}\right)
$$

$$
F=\mathbf{6 0 0} \mathrm{N}
$$

$$
F=16,000,000 \mathrm{~N}
$$

Try This

What is the electric field strength if a particle with a charge of $+6.3 \mu \mathrm{C}$ experiences a force of 0.0025 N ?

$$
E=\frac{F}{q}=\frac{0.0025 \mathrm{~N}}{6.3 \times 10^{-6} \mathrm{C}}
$$

$$
E=397 \mathrm{~N} \mathrm{C}^{-1}
$$

Think about this...

Two isolated point charges, $-7 \mu \mathrm{C}$ and $+2 \mu \mathrm{C}$, are at a fixed distance apart. At which point is it possible for the electric field strength to be zero?

Try this

What is the gravitational field strength halfway between the centers of the earth and the moon?

$$
r=3.8 \times 10^{8} \mathrm{~m} / 2=\mathbf{1 . 9} \times \mathbf{1 0}^{\mathbf{8}} \mathbf{~ m}
$$

$$
\begin{aligned}
& m=6 \times 10^{24} \mathrm{~kg} \\
& g=\left(6.67 \times 10^{-11}\right) \frac{\left(6 \times 10^{24}\right)}{\left(1.9 \times 10^{8}\right)^{2}}=\mathbf{0 . 0 1 1} \mathbf{N ~ k g}^{-1} \\
& g=G \frac{M}{r^{2}} \quad G=6.67 \times 10^{-11} \frac{\mathrm{~N} \times \mathrm{m}^{2}}{\mathrm{~kg}^{2}}
\end{aligned}
$$

$$
\mathrm{m}=7.3 \times 10^{22} \mathrm{~kg}
$$

$$
g=\left(6.67 \times 10^{-11}\right) \frac{\left(7.3 \times 10^{22}\right)}{\left(1.9 \times 10^{8}\right)^{2}}=\mathbf{0} .00013 \mathbf{N ~ k g}^{-\mathbf{1}}
$$

$$
\mathrm{g}=0.011-0.00013=
$$

$$
g=0.0109 \mathrm{~N} \mathrm{~kg}^{-1}
$$

Try this

Where would an object experience a

 gravitational field of $0 \mathrm{~N} \mathrm{~kg}^{-1} \longrightarrow G \frac{M_{e}}{r_{e}{ }^{2}}=G \frac{M_{m}}{r_{m}{ }^{2}}$P8 $\quad r=3.8 \times 10^{8} \mathrm{~m} \quad r_{m}=3.8 \times 10^{8}-r_{e}$

$$
\begin{aligned}
& \mathrm{m}=6 \times 10^{24} \mathrm{~kg} \\
& \begin{array}{c}
\text { cancel out G } \\
\text { and } \\
\text { square root everything }
\end{array} \\
& \chi \frac{M_{e}}{r_{e}^{2}}=\sqrt{\frac{M_{m}}{r_{m}^{2}}} \\
& \frac{\sqrt{M_{e}}}{r_{e}}=\frac{\sqrt{M_{m}}}{r_{m}}
\end{aligned}
$$

$$
\mathrm{m}=7.3 \times 10^{22} \mathrm{~kg}
$$

$$
\begin{array}{r}
\frac{\sqrt{6 \times 10^{24}}}{r_{e}}-\frac{\sqrt{7.3 \times 10^{22}}}{\left(3.8 \times 10^{8}-r_{e}\right)} \\
\left(9.31 \times 10^{20}\right)-\left(2.45 \times 10^{12}\right) r_{e}=\left(2.70 \times 10^{11}\right) r_{e} \\
\left(9.31 \times 10^{20}\right)=\left(2.72 \times 10^{12}\right) r_{e}
\end{array}
$$

$$
g=G \frac{M}{r^{2}}
$$

$$
\mathrm{G}=6.67 \times 10^{-11} \frac{N \times m^{2}}{k g^{2}}
$$

$$
r_{e}=3.42 \times 10^{8} \mathrm{~m}
$$

Magnetism \& Right Hand Rule
 IB PHYSICS | FORCE FIELDS

Rules of Interaction

N
 $S \rightarrow \leftarrow N$
 S

Cutting Magnets in Half

Poles cannot be isolated - a magnet cannot be broken to get a separate north and south pole. Instead, it creates two magnets, each with a north and south pole

N S/N S

Magnetic Domains

Domains Before Magnetization

Domains After Magnetization

In order for a material with domains to become magnetic, the domains have to be aligned by an external magnetic field.

If enough of a materials domains become aligned, the material forms a magnetic dipole and becomes a permanent magnet

Magnetic Fields

Magnetic field lines point from North to South

A compass would align with these field lines

B-Field

$B \rightarrow$ Magnetic Field Strength

Units

Tesla [T]

Magnetic Fields

A horseshoe magnet is just a bent bar magnet. The rules for magnetic fields still apply.

The Earth is a Magnet

Right Hand Rule \#1

If you make a "thumbs up" sign and point your thumb down a wire in the direction of the current, your other four fingers will point in the direction of the magnetic field.

Thumb points in direction of the current Fingers point in direction of the field lines

Drawing in 3D

It can be hard to translate a $3^{\text {rd }}$ dimension into a 2-dimensional diagram so there some conventions to help us out

How do you represent a direction that's perpendicular to the paper?

Into the paper
Out of the paper

Drawing in 3D

Where is Magnetic Flux Density the highest?

	-	$\bigcirc \cdot$			\times		x	\times
-	-	- -	,		x		x	\times
-	-	- -			\times		\times	\times
-	-	- -		x	\times		\times	\times
-	-	- -	I	\times	\times		\times	\times
\bullet	-	- -		\times	\times		\times	\times
-	-	- -			$\times x$		\times	\times
\bullet	\bullet	- -			$\times \times$		\times	\times
\bullet	\bullet						\times	\times

Right Hand Rule \#1

Draw in the magnetic field lines around these current carrying wires

Looped Wire

A wire in a loop has as stronger magnetic field inside the loop than outside...

Creating an electromagnet

Magnetic Field

Electromagnet Applications

Electromagnetic Force

IB PHYSICS | FORCE FIELDS

Remember the Right Hand Rule?

Thumb points in direction of the current

Fingers point in direction of the field lines

Right Hand Rule \#2

Thumb points in direction of the current
Fingers point in direction of the field lines
Palm points in direction of the force

How do you represent a direction that's perpendicular to the paper?

Into the paper
Out of the paper

Right Hand Rule \#2

A current-carrying wire is placed in a magnetic field and the magnetic field exerts a force on the wire

Designing a Motor

When electric current is passed through a magnetic field, you get motion

Motors vs Generators

Electric Motors convert

Electricity
 Motion

Electric Generators convert

Motion

Electricity

Examples

Speakers

Definition of the Ampere

Consider two parallel wires, with current in the same direction. Do they attract or repel??

**One ampere is defined as the current that would cause a force of $2 \times 10^{-7} \mathrm{~N}$ per meter between two long parallel conductors separated by 1 m in a vacuum

Fields

Gravitational Field

$$
g=\frac{F}{m}=\frac{[\mathrm{N}]}{[\mathrm{kg}]}
$$

Magnetic Field

$$
B=\frac{F}{I}=\frac{[\mathrm{N}]}{[\mathrm{A}]}=[\mathrm{T}]
$$

Electric Field

$$
E=\frac{F}{q}=\frac{[\mathrm{N}]}{[\mathrm{C}]}
$$

Magnetic Flux

The magnetic field strength is sometimes referred to as magnetic flux and depends on how perpendicular the current is in relation to the field direction

Max flux

Less flux

No flux given.

Magnetic field Strength

F $B=\overline{I L \sin \theta}$

The force on the wire is proportional to the charge moving perpendicular to the field. Because of these the perpendicular component must be used in the calculation

Fields

$F=B I L \sin \theta$ $I L \sin \theta$

Magnetic force Newtons [N]

B Magnetic field strength Tesla [T]

I Current
Amperes [A]

Length of conductor in uniform magnetic field

Angle between
θ magnetic field and current

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} I & =\frac{\Delta q}{\Delta t} \\ F & =k \frac{q_{1} q_{2}}{r^{2}} \\ k & =\frac{1}{4 \pi \varepsilon_{0}} \\ V & =\frac{W}{q} \\ E & =\frac{F}{q} \\ I & =n A v q \end{aligned}$	Kirchhoff's circuit laws: $\begin{aligned} & \quad \Sigma V=0 \text { (loop) } \\ & \quad \Sigma I=0 \text { (junction) } \\ & R=\frac{V}{I} \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \\ & R_{\text {total }}=R_{1}+R_{2}+\cdots \\ & \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ & \rho=\frac{R A}{L} \end{aligned}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$F=q v B \sin \theta$
	$F=B I L \sin \theta$

Try This...

A current of 3.8 A in a long wire experiences a force of $5.7 \times 10^{-3} \mathrm{~N}$ when it flows through a magnetic field of strength 25 mT . If the length of wire in the field is 10 cm , what is the angle between the field and current?

$F=B I L \sin \theta$

$$
\theta=\sin ^{-1}\left(\frac{F}{B I L}\right)=\sin ^{-1}\left(\frac{\left(5.7 \times 10^{-3}\right)}{\left(25 \times 10^{-3}\right)(3.8)(0.1)}\right)
$$

$$
\begin{aligned}
& F=5.7 \times 10^{-3} \mathrm{~N} \\
& B=25 \mathrm{mT}=25 \times 10^{-3} \mathrm{~T} \\
& I=3.8 \mathrm{~A} \\
& L=10 \mathrm{~cm}=0.1 \mathrm{~m}
\end{aligned}
$$

$\theta=36.87^{\circ}$

Force on a Charged Particle

When there is a magnetic force on a current carrying wire, the force is really on the moving charges inside of the conductor.

Single charged particles can also experience a magnetic force when moving through a magnetic field...

$$
\begin{array}{lr}
F=B I L \sin \theta & \\
F=B\left(\frac{q}{\not r}\right)(v \not t) \sin \theta & \\
F=\frac{L}{t} \\
F=B q v \sin \theta & I=\frac{q}{t}
\end{array}
$$

IB Physics Data Booklet

Sub-topic 5.1 - Electric fields	Sub-topic 5.2 - Heating effect of electric currents
$\begin{aligned} I & =\frac{\Delta q}{\Delta t} \\ F & =k \frac{q_{1} q_{2}}{r^{2}} \\ k & =\frac{1}{4 \pi \varepsilon_{0}} \\ V & =\frac{W}{q} \\ E & =\frac{F}{q} \\ I & =n A v q \end{aligned}$	Kirchhoff's circuit laws: $\begin{aligned} & \quad \Sigma V=0 \text { (loop) } \\ & \quad \Sigma I=0 \text { (junction) } \\ & R=\frac{V}{I} \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \\ & R_{\text {total }}=R_{1}+R_{2}+\cdots \\ & \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \\ & \rho=\frac{R A}{L} \end{aligned}$
Sub-topic 5.3 - Electric cells	Sub-topic 5.4 - Magnetic effects of electric currents
$\varepsilon=I(R+r)$	$F=q v B \sin \theta$
	$F=B I L \sin \theta$

Try This...

What is the magnetic force acting on a proton $\left(+1.6 \times 10^{-19} \mathrm{C}\right)$ moving at an angle of 32° across a magnetic field of $5.3 \times 10^{-3} \mathrm{~T}$ at a speed of $3.4 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$?

$$
\begin{aligned}
& F=q v B \sin \theta \\
& F=\left(1.6 \times 10^{-19}\right)\left(3.4 \times 10^{5}\right)\left(5.3 \times 10^{-3}\right) \sin 32^{\circ}
\end{aligned}
$$

$$
q=1.6 \times 10^{-19} \mathrm{C}
$$

$$
v=3.4 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
F=1.5 \times 10^{-16} \mathrm{~N}
$$

Particles Moving Across Fields

magnetic field out of screen

