Force Fields

IB Physics Content Guide

Big Ideas

- Opposite charges/poles attract while like charges/poles repel
- The force between charged particles demonstrates the same relationship as the force between bodies with mass
- A force field describes the force at a location per unit mass, charge, or current
- A current flowing through a conductor produces a magnetic field
- The relative directions of current, magnetic field, and electromagnetic force can be found using the right-hand rules

Content Objectives

1 – Static Electricity

I can explain how objects can become charged		
I can qualitatively describe the reactions between charged particles		
I can describe the process of grounding a charged object		

2 – Electrostatic and Gravitational Force

I can use Coulomb's Law to relate electrostatic force to particle charge and separation distance		
I can use the Law of Gravitation to relate gravitation force to object mass and separation distance		
I can determine the units of Coulomb's Constant and the Gravitation Constant using unit analysis		
I can describe how the sign of the calculated electrostatic force indicates attraction or repulsion		
I can compare and contrast electrostatic and gravitation forces		
I can discuss the impact of permittivity on Coulomb's Constant		

3 - Force Fields

I can calculate force between objects with a net charge or mass		
I can draw the vector force field for electric and gravitational fields		
I can describe the role of a test charge or test mass in representing force fields		
I can describe how the magnitude of a force changes with distance from an object		
I can calculate field strength with proper units around a single object		
I can calculate the net field strength based on two or more objects		
I can determine the location where the net field strength is zero		

4 – Magnetism and Right Hand Rule

I can describe the pole conditions required for magnetic attraction and repulsion		
I can explain what happens when a dipole magnet is cut into pieces		
I can describe the role of magnetic domains in magnetizing and de-magnetizing a material		
I can draw in magnetic field lines around a magnet with a north and south pole		
I can describe the layout of the Earth's magnetic poles		
I can use the right-hand rule to draw in a magnetic field around a current carrying wire		
I can use the right-hand rule to predict the current direction through a wire with a surrounding field		
I can indicate a vector that is pointing into or out of the page		
I can describe some applications of electromagnets in use today		
I can describe the design factors that affect the strength of an electromagnet		

5 – Electromagnetic Force

I can use the right-hand rule to predict the force direction on a charge moving through a field		
I can use the right-hand rule to predict the force direction on a current carrying wire placed a field		
I can describe the general functions of electric motors and generators		
I can calculate the magnetic field strength and force on a wire or moving charged particle		
I can predict the trajectory of a charged particle moving through a magnetic field at different speeds		

Force Fields

Shelving Guide

Forces between objects

Coulomb's Law

	Variable Symbol	Unit
Electrostatic Force	F	N
Object 1 Charge	q 1	С
Object 2 Charge	q ₂	С
Separation Distance	r	M
Coulomb Constant	k	N m ² C ⁻²
Permittivity of Free Space	ε ₀	C ² N ⁻¹ m ⁻²

Data Booklet Equations:

$$F = k \frac{q_1 q_2}{r^2}$$

$$k = \frac{1}{4\pi\varepsilon_0}$$

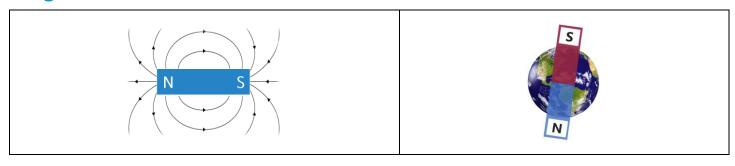
$$k = 8.99 \times 10^{9} \text{ N m}^{2} \text{ C}^{-2}$$

 $\epsilon_{0} = 8.85 \times 10^{-12} \text{ C}^{2} \text{ N}^{-1} \text{ m}^{-2}$

Universal Law of Gravitation

	Variable Symbol	Unit
Gravitational Force	F	N
Object 1 Mass	М	kg
Object 2 Mass	m	kg
Separation Distance	r	m
Gravitational Constant	G	N m ² kg ⁻²

Data Booklet Equation:


$$F = G \frac{m_1 m_2}{r^2}$$

 $G = 6.67 \text{ N m}^2 \text{ kg}^{-2}$

Force Fields

	Electric Field			Gravitati	onal Field
Symbol	Е	Data Booklet Equation:	Symbol	g	Data Booklet Equation:
Units	F C ⁻¹	$E = \frac{F}{q}$	Units	F kg ⁻¹	$g = \frac{F}{m} \qquad g = G \frac{M}{r^2}$

Magnetic Fields

Right Hand Rule

Right Hand Rule #1			Rig	ht Han	d Rule #2
Magnetic field around a current carrying wire			_		direction on a wire or particle
Thumb	Current	Current		Thumb Current	
Fingers	Magnetic Field	l	Fingers	Magnetic Field	
. A .	(Palm		Force
		. I	SIN		SN

Electromagnetic Force

	Variable Symbol	Unit
Magnetic Force	F	N
Magnetic Field Strength	В	Т
Current	I	Α
Wire Length	L	m
Angle to Field	θ	0
Particle Charge	q	С
Particle Velocity	V	m s ⁻¹

Data Booklet Equations:

Wire:

 $F = BIL \sin \theta$

Particle:

 $F = qvB \sin \theta$

Charged Particles Moving through a Magnetic Field

	Magnetic Field Out of Screen	Magnetic Field Into Screen
Positive Particle	fast	* * * * * * * *
Negative Particle		* * * * * * * * * * * * * * * * * * *