Newton's $1^{\text {st }}$ Law \& Net Force

IB PHYSICS | FORCES

What is a Newton??

Unit of Force
 $$
\mathrm{N}=\mathrm{kg} \times \mathrm{m} \mathrm{~s}^{-2}
$$

*An apple weighs about 1 N

REMINDER: Vector vs Scalar

Vector Quantities

Scalar Quantities

Distance

Speed
Energy
Can be negative to indicate direction

Only Positive

Newton's First Law

A body will remain at rest or moving with constant velocity unless acted upon by an unbalanced force
"Law of Inertia"

(Total) \rightarrow Net Force

The vector sum of all the

 forces acting on an object

Equilibrium

When all forces cancel out, the object is in equilibrium

$$
F_{n e t}=0 \mathrm{~N}
$$

20 N

10 N

Using Equilibrium

What is the tension force on the second cable if the window washers are in equilibrium?

$$
\begin{aligned}
& F_{n e t}=0 \mathrm{~N} \\
& 1350+T-750-900-800=0 \mathrm{~N}
\end{aligned}
$$

$T=1100 \mathrm{~N}$

Weight of Guy \#1 $=750$ N
Weight of Guy \#2 $=800 \mathrm{~N}$
Weight of Platform $=900 \mathrm{~N}$

What is the Net Force? | 1

$$
\mathrm{F}_{\mathrm{net}}=\xrightarrow{4 \mathrm{~N}}
$$

What is the Net Force? | 2

What is the Net Force? | 3

Remember SOAHTOA?

$$
\begin{aligned}
& x=20 \cos (30)=17.3 N \\
& y=20 \sin (30)=10 N
\end{aligned}
$$

What is the Missing Force?

$$
x=50 \cos (45)=35.4 \mathrm{~N} \quad y=50 \sin (45)=35.4 \mathrm{~N}
$$

$$
F_{\text {net }}=0 \mathrm{~N}
$$

Cable Tension

Lesson Takeaways

\square I can define a force (with proper units) in terms of the interaction between two objects
\square I can describe Newton's first law
\square I can calculate the net force on an object
\square I can calculate an unknown force for an object in equilibrium

