Newton's 2 ${ }^{\text {nd }}$ Law

IB PHYSICS | FORCES

What is Momentum?

An object's tendency to continue moving

Momentum $=\mathrm{m} \times \mathrm{v}$

Newton's Second Law

The rate of change of momentum of a body is directly proportional to the unbalanced force acting on that body and takes place in same direction.

$$
\begin{aligned}
& F_{n e t}=\frac{m v-m u}{t}=m\left(\frac{v-u}{t}\right)=m a \\
& v=u+a t \\
& a=\frac{v-u}{t}
\end{aligned} \begin{array}{r}
F_{n e t}=m a
\end{array}
$$

Newton's Second Law

Force $=$ mass \times acceleration

n
0
n
n
n
$=m \times a$
$\stackrel{D}{5} \xrightarrow{2 \times 20} \rightarrow \mathrm{~N}=\mathrm{kg} \times \mathrm{m} \mathrm{s}^{-2}$

2nd Law | Try This... | \#1

Your shiny new motorcycle has an engine capable of 2450 N of force. If it has a max acceleration of $15 \mathrm{~m} \mathrm{~s}^{-2}$, what is its mass in kilograms?

$$
\begin{aligned}
& F=2450 \mathrm{~N} \\
& a=15 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned} \quad F=m a, ~ F=\frac{2450}{a}=\frac{15}{} \quad \begin{aligned}
& m=163 \mathrm{~kg}
\end{aligned}
$$

2nd Law | Try This... | \#2

How fast is this 100 kg block accelerating?

$2^{\text {nd }}$ Law is the Bridge

Forces

$F=m a$

Motion

Equations

Units	m	$m s^{-1}$	$m s^{-1}$	$m s^{-2}$	s
$v=u+a t$		u	v	a	t
$s=u t+\frac{1}{2} a t^{2}$	s	u		a	t
$v^{2}=u^{2}+2 a s$	s	u	v	a	
$s=\frac{(v+u) t}{2}$	s	u	v		t

$2^{\text {nd }}$ Law | Try This... | \#3

A race car has a mass of 710 kg . It starts from rest and travels 40 meters in 3.0 seconds. That car is uniformly accelerated during the entire time. What net force is applied to it?

s	40 m	$s=\psi+\frac{1}{2} a t^{2}$	
u	$0 \mathrm{~m} \mathrm{~s}^{-1}$		$F=m a$
v	---	$a=8.89 \mathrm{~m} \mathrm{~s}^{-2}$	$F=(710)(8.89)$
	$?$		$F=6311 \mathrm{~N}$
t	3 s		

2nd Law | Try This... | \#4

You slide a 0.20 kg hockey puck on the ice at a velocity of $12 \mathrm{~m} \mathrm{~s}^{-1}$. After 3 seconds, the force of friction causes it to stop. What is the force of friction?

S	---	$v=u+a t$	
u	$12 \mathrm{~m} \mathrm{~s}^{-1}$	$0=12+a(3)$	
v	$0 \mathrm{~m} \mathrm{~s}^{-1}$	$a=-4 \mathrm{~ms}^{-2}$	$F=(0.2)(-4)$
a	?		
t	3 s		$F=-0.8 \mathrm{~N}$

Net Force \rightarrow Acceleration

Any time there is a net force that is not zero, there will be acceleration in that direction

$$
a=\frac{F}{m}
$$

Equilibrium \rightarrow Acceleration $=0$

If the net force is 0 N , then the object is not accelerating.

This can mean two different things:

- Not Moving
- Constant Velocity

Lesson Takeaways

\square I can describe Newton's second law in terms of momentum
\square I can calculate force given mass and acceleration and calculate acceleration given force and mass

II can combine Newton's second law with the kinematic equations to solve force/motion problems
\square I can explain the connection between constant velocity and balanced forces

