Weight, Normal Reaction, & Tension

IB PHYSICS | FORCES

Types of Forces | Weight

F_g → Force of Gravity (weight) [N]
m → mass [kg]
g → Acceleration due to Gravity → 9.81 m s⁻²

Mass vs Weight

Mass	Metric Units	
Amount of matter	Mass	kg
	Weight	Ν
Weight Force due to gravity		

Types of Forces | Weight

What is your mass in kilograms? (1 kg = 2.2 lbs)

$$m = 165 \text{ lbs } \times \frac{1 \text{ kg}}{2.2 \text{ lbs}} = 75 \text{ kg}$$

What is your weight in Newtons?

 $F_g = mg = (75)(9.81) = 736$ N

Types of Forces | Normal Reaction

R for normal **R**eaction force Some sources use F_N for "Normal Force"

Types of Forces | Normal Reaction

*Always perpendicular to the surface applying the force

Normal Force Depends on Scenario

Types of Forces | Tension

*Always pulls in the direction of the rope or chain

Lesson Takeaways

- □ I can calculate the weight of an object
- □ I can describe the difference between mass and weight
- □ I can use Newton's third law to describe how to find the normal reaction force with force pairs
- I can use a diagram to identify the direction of tension force acting on an object