Weight, Normal Reaction, \& Tension

IB PHYSICS | FORCES

Types of Forces | Weight

Newton's $2^{\text {nd }}$ Law:

$$
\begin{aligned}
& \mathrm{F}=\mathrm{m} \times \mathrm{a} \\
& \downarrow \\
& \mathrm{~F}_{\mathrm{g}}=\mathrm{m} \times \mathrm{g}
\end{aligned}
$$

$\mathrm{F}_{\mathrm{g}} \rightarrow$ Force of Gravity (weight) [N] $\mathrm{m} \rightarrow$ mass [kg]
$\mathrm{g} \rightarrow$ Acceleration due to Gravity $\rightarrow 9.81 \mathrm{~m} \mathrm{~s}^{-2}$

Mass vs Weight

Mass

Amount of matter

Weight
Force due to gravity

Types of Forces | Weight

What is your mass in kilograms? ($1 \mathrm{~kg}=2.2 \mathrm{lbs}$)

$$
m=165 \mathrm{lbs} \times \frac{1 \mathrm{~kg}}{2.2 \mathrm{lbs}}=75 \mathrm{~kg}
$$

What is your weight in Newtons?

$$
F_{g}=m g=(75)(9.81)=736 \mathrm{~N}
$$

Types of Forces | Normal Reaction

$\mathbf{R} \longleftarrow$ R for normal Reaction force Some sources use F for "Normal Force"

Types of Forces | Normal Reaction

*Always perpendicular to the surface applying the force

Normal Force Depends on Scenario

$R=F_{g}=49 \mathrm{~N}$

Types of Forces | Tension

Lesson Takeaways

\square I can calculate the weight of an object
I can describe the difference between mass and weight
\square I can use Newton's third law to describe how to find the normal reaction force with force pairs
\square I can use a diagram to identify the direction of tension force acting on an object

