Friction

IB PHYSICS | FORCES

Types of Forces | Friction

F_{f}

*Always opposes motion

What is Friction?

The force opposing the
motion between two objects that are in contact

Types of Friction

Static Friction-

Not Moving

Dynamic (Kinetic) Friction-
In Motion Static > Dynamic

Static vs. Dynamic Friction

Friction decreases

How do we Calculate Friction?

$F_{f}=\mu \times R \longleftarrow$ Normal Reaction Force

Coefficient of Friction
*unitless

Large $\mu \rightarrow$ "Sticky"
Small $\mu \rightarrow$ "Slippery"

Materials	μ_{s}	μ_{d}
Steel on ice	0.1	0.05
Steel on steel (dry)	0.6	0.4
Steel on steel (greased)	0.1	0.05
Rope on wood	0.5	0.3
Teflon on steel	0.04	0.04
Shoes on ice	0.1	0.05
Climbing boots on rock	1.0	0.8

Static Friction

$\boldsymbol{\mu}_{\mathbf{s}} \times \mathbf{R}$ calculates the limit of static friction but below that, it will be equal and opposite to external force

Physics Data Booklet

Sub-topic 2.2 - Forces

$$
\begin{aligned}
& F=m a \\
& \begin{array}{l}
F_{\mathrm{f}} \leq \mu_{\mathrm{s}} R \\
F_{\mathrm{f}}=\mu_{\mathrm{d}} R
\end{array} \quad F_{\mathrm{f}}=\mathrm{\mu R}
\end{aligned}
$$

How do we Calculate Friction?

F	External Force
F_{g}	$m g \sim^{g=9.81 \mathrm{~m} \mathrm{~s}^{2}}$
R	$F_{g} \quad$ *when flat
F_{f}	μR

Calculate Friction | Try This...

Santa's Sleigh is loaded up with toys for all the good little girls and boys until it has a total mass of 2000 kg . What is the static friction force that must be overcome if μ_{s} is 0.1 ?

Calculating Acceleration w/ Friction

Step 1:

Find the Force from Friction

- $F_{g}=m g$
$R=F_{g}$
$F_{f}=\mu \times R$
Step 2:
Find $F_{\text {net }}$
- $F_{\text {net }}=F_{\text {push }}-F_{f}$

Step 3:
Find acceleration

$$
F_{\text {net }}=m a \Longleftrightarrow a=F_{\text {net }} / r
$$

Calculate Friction | Try This...

Santa's reindeer pull his 2000 kg sleigh with a force of 4980 N . How fast does the sleigh accelerate if the coefficient of kinetic friction $\left(\mu_{\mathrm{k}}\right)$ is 0.05 ?

Lesson Takeaways

\square I can calculate the force of friction when given the reaction force and coefficient of friction
\square I can quantitatively compare surfaces based on their coefficients of friction
\square I can calculate the acceleration of an object with friction based on the external force and mass

