Air Resistance

IB PHYSICS | FORCES

Air Resistance

Calculate the Acceleration

700 N

Terminal Velocity

At a certain velocity, the air resistance acting on an object (or person) is equal to the force of gravity.
$F_{\text {net }}=$
This is the top speed for a falling object

Motion Graphs Guide

Terminal Velocity

Note: these graphs treat the downward direction as positive

When the Parachute opens...

Terminal Velocity

Terminal Velocity

A parachute dramatically decreases the terminal velocity where air resistance balances out the weight

Sample IB Problem

An object falls vertically from rest. Air resistance acts on the object and it reaches a terminal speed. Which of the following is the distance-time graph for its motion?
A.

C.

B.

D.

Sample IB Problem

3. A skydiver jumped out of an airplane. On reaching a terminal speed of $60 \mathrm{~ms}^{-1}$, she opened her parachute. Which of the following describes her motion after opening her parachute?
A. She went upwards for a short time, before falling to Earth at a speed of $60 \mathrm{~ms}^{-1}$.
B. She continued downwards at $60 \mathrm{~ms}^{-1}$, but hit the ground with less force.
C. She continued to fall but reached a new terminal speed of less than $60 \mathrm{~ms}^{-1}$.
D. She went upwards for a short time, before falling to Earth at a speed of less than $60 \mathrm{~ms}^{-1}$.

Sample IB Problem

4. Two identical balls are dropped from a tall building, one a few seconds after the other. Air resistance is not negligible. As the balls fall, the distance between the balls will
A. decrease.
B. increase.
C. increase then remain constant.
D. remain constant.

Time (s)

Lesson Takeaways

\square I can describe the factors that affect air resistance and how the resistance changes with velocity
\square I can define Terminal Velocity in terms of net force
\square I can graph the change in position and velocity for an object falling with air resistance and reaching terminal velocity

